Automation adoption and export performance: Evidence from French firms

Giacomo Domini Marco Grazzi Daniele Moschella Thao Trang Nguyen Tania Treibich¹

¹School of Business and Economics, University of Maastricht (The Netherlands), Institute of Economics, Scuola Superiore Sant'Anna, Pisa (Italy) and Science-Po Paris, OFCE-DRIC, Sophia Antipolis (France)

> Economics of Innovation Conference 14 September 2023

Domini, Grazzi, Moschella, Nguyen and Treibich

Automation and the future of work

Automation and firm performance

Automation adoption \rightarrow Firm performance

Employment and wages Studies on the firm level impact of automation show a positive effect on employment and wages (Accomegly, Lelarge, and Restrong, 2020; Diven, Heng, and Wu, 2010;

(Acemoglu, Lelarge, and Restrepo, 2020; Dixon, Hong, and Wu, 2019; Domini et al., 2021; Humlum, 2021; Koch, Manuylov, Smolka, 2021)

Market-stealing effect

Automation can then be viewed as a source of firm competitiveness leading to increases in market share

(Bajgar et al., 2019; Acemoglu and Restrepo, 2020; Auto et al., 2020; Babiana et al., 2020; Firooz et al., 2022)

Automation and firm performance

Automation adoption \rightarrow Firm performance

Employment and wages Studies on the firm level impact of automation show a positive effect on employment and wages

(Acemoglu, Lelarge, and Restrepo, 2020; Dixon, Hong, and Wu, 2019; Domini et al., 2021; Humlum, 2021; Koch, Manuylov, Smolka, 2021)

Market-stealing effect

Automation can then be viewed as a source of firm competitiveness leading to increases in market share

(Bajgar et al., 2019; Acemoglu and Restrepo, 2020; Auto et al., 2020; Babiana et al., 2020; Firooz et al., 2022)

Can we identify more precisely the source of this competitiveness using trade data?

Automation and trade

Automation affects trade patterns

- ▶ Robots can change the global organisation of production
 → produce products at the home country rather than offshoring
 → reshoring (Artuc et al., 2019; Faber, 2020; Krenz et al., 2021)
- Automation thus affects countries' specialisation and positioning in GVCs (Artuc et al., 2022)

Automation and trade shocks

 Automation can strengthen firms' resilience to shocks and disruptions, ex: COVID-19 (Bas et al., 2022)

Automation adoption \rightarrow **Product portfolio** \rightarrow **Export** performance

Automation adoption \rightarrow **Product portfolio** \rightarrow **Export** performance

Conceptual framework

- Firms adopt automation to increase their competitiveness
- Automation could play an important role to promote firms' exports performance through new products (product innovation) or lower costs (process innovation)

Automation adoption \rightarrow **Product portfolio** \rightarrow **Export** performance

Conceptual framework

- Firms adopt automation to increase their competitiveness
- Automation could play an important role to promote firms' exports performance through new products (product innovation) or lower costs (process innovation)
- ► Indeed:
 - Success in export markets with either existing or new products (Dollar, 1986; Jensen and Thursby, 1987; Lachenmaier and Wößmann, 2006)
 - Firms grow by adding products, but face uncertainty when doing so (Braguinsky et al., 2021)
 - Export growth at product level depends on how "core" to the firm they are (Bontadini et al., 2023)

Automation adoption \rightarrow **Product portfolio** \rightarrow **Export** performance

Conceptual framework

- Firms adopt automation to increase their competitiveness
- Automation could play an important role to promote firms' exports performance through new products (product innovation) or lower costs (process innovation)
- Indeed:
 - Success in export markets with either existing or new products (Dollar, 1986; Jensen and Thursby, 1987; Lachenmaier and Wößmann, 2006)
 - Firms grow by adding products, but face uncertainty when doing so (Braguinsky et al., 2021)
 - Export growth at product level depends on how "core" to the firm they are (Bontadini et al., 2023)
- However, Multi-product firms change the composition of their product portfolio in response to shocks in competition and demand (Mayer et al, 2014, 2021)

Automation adoption \rightarrow Product portfolio \rightarrow Export performance

Automation and product innovation - Positive channel

- Automation can improve firm capabilities and ability to upgrade their products (Szalavetz, 2019)
- Robots can improve efficiency (Acemoglu and Restrepo, 2019) and create customized products (Artuc et al., 2019; Faber, 2020; Krenz et al., 2021). For example, the introduction of **3D printing** boosted exports of producers of hearing aids (Freund et al., 2021, Weller et al., 2015)

Automation and product innovation - Negative channel via allocation dilemma

 Negative association between robot adoption and the probability to introduce product innovations, except for large investments (Antonioli et al., 2022)

Automation adoption \rightarrow **Export** portfolio \rightarrow Export performance

Automation may change the content of the export portfolio

- embodied technology facilitates the exports of intermediate and capital goods (Rijesh, R., 2020, Indian firms)
- automation adopters produce more varieties, engage more in exports and imports (Ing and Zhang, 2022, Indonesian firms)

Automation may change the quality of exported products

Imported inputs, technologies and robot adoption in particular leads to increases in the quality of exported products, especially in developing countries (Castellani & Fassio, 2019, Swedish firms; DeStefano et al., 2021; Hong et al., 2022, Chinese firms; Navaretti et al., 2004) Empirical evidence on automation and export performance

Automation adoption \rightarrow Product portfolio \rightarrow Export performance

 Robot adoption increases firms' export start and survival, export sales and share (Alguacil et al., 2022, Spanish firms)

This paper

Our contribution

- We consider a broad array of automation technologies
- We consider various dimensions of export performance (value, country and product diversification, quality, price,)
- We investigate the underlying channels

Features

- ▶ We exploit transaction-level customs data from France
- We execute a staggered diff-in-diff analysis, resorting to novel methodologies in the field (Callaway and Sant'Anna, 2021; Borusyak et al., 2022)

Data and variables

Data and variables

Datasets

- DGDDI: customs database
 - import and export flows, trade value, country of origin/destination, and an 8-digit product code (transaction level)
- FICUS/FARE: balance-sheet and revenue-account data
- DADS *Postes*: employer-employee database (social security forms) covering all French firms with employees

Main variables:

- Export value, number of exported products, number of export countries
- Firm-level events (spikes) of investment in automation (based on imports of relevant technologies)

Measuring automation adoption

We use imports of capital goods embedding automation technologies

- Why? Lack of systematic firm-level info on adoption of automation technologies
 - Done by several studies (Dixon et al., 2020; Bonfiglioli et al., 2020; Acemoglu et al., 2020; Aghion et al., 2020; Domini et al., 2021; Domini et al., 2022)
 - Exceptions: survey data (NL, US)

How? Identified via product codes • appendix

We build on a taxonomy by Acemoglu and Restrepo (2018)

Characterising automation adoption

Imports of such goods display the typical **spiky behavior** of investment (Asphjell et al., 2014; Grazzi et al., 2016)

They are rare across firms In a given year, only around 14% of importing firms import automation-related products; over 2002-2017, less than half of them do it

They are rare within firms Among firms that do import such goods, close to 30% do it only once; the frequency decreases smoothly with higher values

► A firm's *largest* event of import of such goods (in a year) accounts for a *very large share* (around 70%) of its total across years

Automation (robot) spike = a firm's largest automation (robot) adoption event

Measuring export performance

- Log export
- Number of exported products
- Number of exported countries

Identifying the channels

Change in product (export) portfolio

- number of new products (added to firm portfolio)
 - a product which was not sold before appears in the firm's exports
- Core vs. non-core products
 - Core product has the highest share in firms' exports; Other products are "non-core"

Change in product quality

- measuring product quality using theory-reliant approach (Khandelwal, 2010) appendix
- measuring price (adjusted and unit price)

Sample construction

Sample includes firms which import at least once over 2002-2017

We initially restrict analysis to manufacturing, but may expand to other sectors at a later stage

	Firm-year obs.	Unique firms
All firms	20,894,189	3,377,101
Importers	2,376,967	440,576
- of which, manufacturing	620,160	57,436
Importers of automation	563,531	43,405
- of which, manufacturing	242,504	19,267

Empirical analysis (preliminary results!)

Empirical approach

Event-study within adopters of automation/AI

(treated vs. not yet treated) (Bessen et al, 2020; Domini et al, 2022)

- Accounts for spiky behavior
- Accounts for selection into automation/AI: only firms importing at least once automation/AI) Stats Regression
- Exploits heterogeneity in timing of the event among relatively similar firms
- Using a range of estimators to obtain robust results: TWFE, and staggered diff-in-diff

Empirical approach

Event-study within adopters of automation/AI

(treated vs. not yet treated) (Bessen et al, 2020; Domini et al, 2022)

- Accounts for spiky behavior
- Accounts for selection into automation/AI: only firms importing at least once automation/AI) Stats Regression
- Exploits heterogeneity in timing of the event among relatively similar firms
- Using a range of estimators to obtain robust results: TWFE, and staggered diff-in-diff

Focussing on a battery of outcome variables:

- Export performance: Export, Nb of exported products, Nb of exported countries
- Heterogeneity analysis: Core vs. non core products; high vs. low income country destinations
- Identifying the channels: product quality; new products

Empirical approach Assumptions

Two identification assumptions for diff-in-diff framework:

- 1. Parallel trends in the absence of treatment
 - We will show it is not credible when using never-treated observations, but it is when using not-yet treated ones
- 2. No anticipation: future treatment does not affect current outcomes
 - ► Firms may anticipate their decision and this might affect other decisions they make (Bessen et al. 2022) → care with causal interpretations

Empirical approach New staggered diff-in-diff methods

A sprawling recent literature has shown that, in complicated designs with multiple groups and periods, and variation in treatment timing, TWFE may provide biased estimates of the ATT

 \rightarrow Solution: new staggered diff-in-diff methods

(Borusyak et al., 2021; Callaway and Sant'Anna, 2021; de Chaisemartin and D'Haultfoeuille, 2020; Sun and Abraham, 2021)

We employ two of these new estimators:

- Callaway-Sant'Anna makes all comparisons relative to the last pre-treatment period for each cohort, then averages across cohorts
- Borusyak et al. regresses outcome on group and time FE in sample of untreated observations, to predict ("impute") the counterfactual for the treated

Event-study regression - methods

In sample of firms importing automation at least once, run the following dynamic Two-Way Fixed Effects (TWFE) specification:

$$Y_{it} = lpha_i + \sum_{k \neq -1; k_{min}}^{k_{max}} eta_k D_{it+k} + \delta_t + \epsilon_{it}$$

Y_{it}: dependent variable of interest

- D_{it+k}: dummy for firm having automation spike k periods away
- $\blacktriangleright \alpha_i$: firm fixed effects
- δ_t : year effects
- \blacktriangleright ϵ_{it} : error term

We set $k_{min} = -4$ and $k_{max} = 4$

Event-study regression - results Export performance

Event-study regression - results Testing the channels: Product innovation - Number of products and products added

Event-study regression - results Testing the channels: Product quality and price

Event-study regression - results Heterogeneity analysis

What explains the decrease in export sales and number of products? Are all products impacted in the same way?

Event-study regression Heterogeneity analysis

Core products

Non-core products

Sample: whole sample - automation spikes

Event-study regression - results Heterogeneity analysis

High-income destinations

Low-income destinations

Sample: whole sample - automation spikes

Discussion and Next steps

Discussion

- Selection leads larger firms to more adoption.
- Caution against firm-level explorations using OLS or event study strategies to uncover the effects of advanced technology adoption (Acemoglu et al., 2023)
- Using staggered dif-in-dif methods within the group of adopting firms, we find that export sales decrease due to a reduction in the number of (new) products

Discussion and Next steps

Discussion

- Selection leads larger firms to more adoption.
- Caution against firm-level explorations using OLS or event study strategies to uncover the effects of advanced technology adoption (Acemoglu et al., 2023)
- Using staggered dif-in-dif methods within the group of adopting firms, we find that export sales decrease due to a reduction in the number of (new) products

Next steps

 Understand better the innovation behaviour of firms adopting automated intermediate goods

Discussion and Next steps

Discussion

- Selection leads larger firms to more adoption.
- Caution against firm-level explorations using OLS or event study strategies to uncover the effects of advanced technology adoption (Acemoglu et al., 2023)
- Using staggered dif-in-dif methods within the group of adopting firms, we find that export sales decrease due to a reduction in the number of (new) products

Next steps

 Understand better the innovation behaviour of firms adopting automated intermediate goods

Feedback is very welcome

Thank you for your attention!

Data appendix

Domini, Grazzi, Moschella, Nguyen and Treibich

Appendix: Product codes (HS6) embedding relevant technologies

1. Industrial robots8479502. Dedicated machinery8479893. Automatic machine tools (incl. Nu- merically controlled machines)845600-846699, 851511-851519	Label	HS-2012 codes
4. Automatic welding machines851521, 851531, 851580, 8515905. Weaving and knitting machines844600-844699, 844700-8447996. Other textile dedicated machinery844400-8445907. Automatic conveyors842831-8428398. Automatic regulating instruments903200-9032999. 2. D winters847720	 Industrial robots Dedicated machinery Automatic machine tools (incl. Numerically controlled machines) Automatic welding machines Weaving and knitting machines Other textile dedicated machinery Automatic conveyors Automatic regulating instruments 	847950 847989 845600-846699, 846820-846899, 851511-851519 851521, 851531, 851580, 851590 844600-844699, 844700-844799 844400-844590 842831-842839 903200-903299 947790

Return

Appendix: measuring quality

We use a theory-reliant approach (Khandelwal et al., 2013)

Run the OLS regression:

 $\ln q_{fpct} + \sigma \ln p_{fpct} = \alpha_p + \alpha_{ct} + \epsilon_{fpct}$

 $\begin{array}{l} \alpha_{ct} : \mbox{ country-time fixed effect} \\ \alpha_{p} : \mbox{ product fixed effect} \\ \ln q_{fpct} : \mbox{ log quantity of firm f - product p - country c - time t} \\ \ln p_{fpct} : \mbox{ log unit price} \\ \sigma : \mbox{ elasticity of substitution of a product} \end{array}$

- Use the values of σ estimated by Broda and Weinstein (2004); if not available then σ=4 (Khandelwal et al., 2013; Simonowska and Waugh, 2014; Giri et al., 2021)
- Estimated quality:

$$\ln \hat{\lambda} = rac{\epsilon_{fpct}}{\sigma - 1}$$

Quality-adjusted price:

$$\ln p_{fpct} - \ln \hat{\lambda_{fpct}}$$

▶ Return

Comparing automating to non-automating firms T-tests

	No automation	Automation	T-test
Number of employees	20.44	129.20	***
Wage per hour (mean)	15.59	17.30	***
Log exports Max share of exports	11.38 0 78	13.50 0.74	*** ***
	0.10	0.14	
Number of export countries	4.26	8.15	***
Number of exported products	4.97	9.72	***
Quality	1.95	2.04	*** ***
Log unit price	1.22	1.30	***

Return

Domini, Grazzi, Moschella, Nguyen and Treibich

Comparing automating to non-automating firms OLS regression

In sample of firms importing at least once, run the following:

$$\Delta Y_{it} = \beta A_i + \gamma X_i + \delta_t + \epsilon_{it}$$

- ▶ Y_{it}: dependent variable of interest (e.g. log export value)
- A_i: dummy for the firm adopting automation over the 2002-2017 period
- X_j: additional controls (incl. sector dummies)
- δ_t : year effects
- $\blacktriangleright \epsilon_{it}$: error term

SEs clustered at the firm level β indicates whether automating firms show different trends in the variables of interest **Return**

Comparing automating to non-automating firms OLS regression results

D.V.: Δ in	Export (Log)	Number countries	Number products	Quality	Quality-adj. price	Unit price
A	0.031***	0.041***	0.172***	0.001	-0.005*	-0.004*
	(0.003)	(0.006)	(0.018)	(0.003)	(0.003)	(0.002)
Year effects	Yes	Yes	Yes	Yes	Yes	Yes
Sector effects	Yes	Yes	Yes	Yes	Yes	Yes
N	284,590	287,598	287,598	230,878	167,838	226,617
R ²	0.006	0.003	0.005	0.003	0.015	0.007

Automating and non-automating firms are on different trends

This would violate the parallel trends assumption, crucial for identification in diff-in-diff designs

▶ Return

Comparing different cohorts of automating firms

Are not-yet treated observations a good counterfactual? In sample of observations between 3 and 1 years before a spike, run the following:

$$\Delta Y_{it} = \beta C_i + \gamma X_i + \delta_t + \epsilon_{it}$$

C_i: cohort dummies (spike year)
 SEs clustered at the firm level

D.V.: Δ in	Export (Log)	Number countries	Number products	Quality	Quality-adj. price	Unit price
F on C _i	1.00	0.85	1.38	1.23	1.16	0.76
Year effects Sector effects N R ²	Yes Yes 38,457 0.001	Yes Yes 27,610 0.006	Yes Yes 27,610 0.010	Yes Yes 23,618 0.007	Yes Yes 23,618 0.019	Yes Yes 23,618 0.005

▶ Return