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Abstract

Assessing the determinants of the most significant green patents has emerged as a crucial goal not only among
scholars but also for policymakers. However, a common definition of the importance based on citation patterns,
as provided in Chai et al., 2020, has been limited to the light-emitting diode (LED) industry. Such a definition is
constrained by unobservable factors that lead to patents being highly cited, such as self-citations, a bias towards
older patents that have had more time to accumulate citations, variations in citation practices, and patent scope. To
address these issues, we propose a measure of importance based on the distance from a paper-patent boundary, which
represents the scientific frontier. Our study demonstrates that green patents grounded in scientific principles are
not only important in their own right but also occupy a central position within the citation network. By utilizing this
definition of importance, we investigate the factors that contribute to the scientific basis of green patents. Our analysis
reveals a critical finding: the percentage of green citations is a key determinant of the scientific basis of patents. This
empirically underscores the need to prioritize "pure green" innovations over "brown" innovations (Heal, 2007) in
order to be recognized as science-based and consequently occupy a central position in the green citation network.

Keywords: Green innovation, green patents, science-based patents
JEL Codes: O30; O34; Q55

1 Introduction
A resurgence of interest in the scholarly community has emerged around the role of science in society and in particular
on its link with technological innovation. This is not surprising if we consider that, on the one side, humanity is facing
important challenges, which represent serious threats (e.g. mounting hazards of climate change; health hazards, and
related diseases like Covid-19); on the other side, humanity seems also to produce fewer brilliant ideas to address
such challenges, so the role of science (and its public support) could be put under discussion. If innovation can be
the solution to address some or many of the most pressing societal challenges we are facing, then the question is
whether science can feed technological innovation and to what extent. In this paper, we focus our attention on one
of such challenges, i.e. climate change, and one of its possible technological fixes, that is the development of climate
change mitigation technologies. In this context, there is a particular sense of urgency, as the catastrophic effects of
climate change are tangible. Therefore, green technologies need to be deployed rather quickly and effectively. In
addition, climate change is a global and pervasive phenomenon, whose public good features are unquestionable and
call for strong public support. So, empirical evidence suggesting that public spending in science would generate the
desired results in terms of deployable green innovation is certainly welcome. We address this topic by investigating
the link between scientific advances and green patents. Understanding the scientific roots of climate change-mitigation
technologies will contribute to the emerging debate on the role of science in society. In addition, we will explore the
determinants of science-based green technologies. This analysis will provide insights to the existing science policy
debate, as it will show the who, where and why of the science-based green invention. We build our empirical exercise
on the work of Ahmadpoor and Jones (2017) (henceforth AJ), who first proposed a distance measure to capture the
extent to which a patent builds on prior scientific advances. Using their methodology, we are able to identify the “green
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patent-paper boundary”, i.e. green patents that are at the scientific frontier. We illustrate the main feature of these green
patents, also in a comparative way, in terms of their performance, technological domain, geographical distribution,
institutional origin and dynamics over time. Our descriptive findings suggest, in line with AJ, that a relatively large
share of green patents are linked to some scientific output, even if indirectly. Furthermore, green patents that build on
scientific discoveries are found to be widely cited, which is in line with AJ results. This clearly points to the relevance
of scientific advances also for clean technologies. Green science-based patents, not surprisingly, are mainly produced
by universities or governments, but also by companies with links to universities. Finally, the geographical distribution
shows that most countries leading in green patents also lead in science-based green patents. Interestingly, this is the
case of emerging green leaders, like China, and Korea. We test the predictive power of these findings by using a
machine learning methodology which reports an increase in the weighted importance of China and Korea of about
37% over time.

2 The link between science and innovation in green technologies: a litera-
ture review

For centuries, the relationship between science and technology has been the subject of intense discussions. Policy-
makers have for a long time considered science as the main source of knowledge that would ultimately contribute to
the emergence of new technical and organizational capabilities, improvements in quality of life, and economic growth.
Scientific discoveries indeed play a crucial role in driving economic growth through innovations: as documented in
Poege et al. (2019), the quality of scientific publications is a strong predictor of their impact on technological devel-
opment and at the same time the value of patents that are directly based on scientific research increases in proportion
to the scientific quality. Many of the most valuable innovations depend on scientific knowledge and for commercial
inventors looking to capitalize on new technologies science can act as a source of inspiration for their own research
and development activities (Gittelman and Kogut, 2003; Fleming and Sorenson, 2004).
The idea of a publicly funded science system that feeds into privately organized innovation channels has been for a
long time the model for most national systems of innovation. However, this notion has recently faced scrutiny, as there
is an increase in the demand for evidence of the benefits of science spending. The fact that science quality is defined
within the realm of science itself contributes to a perception of science as being an independent upstream activity, at
times detached from technological progress, with an indirect and delayed impact on society at best. The investigation
of the science-based sources of technological development has become over time an increasingly relevant topic, due
to changes in firms’ internal R&D processes, market evolution and new norms and policies (Fleming and Sorenson,
2004; Arora et al., 2018; Marx and Fuegi, 2020).
If science plays a relevant role as a source of inspiration and as a possible way for firms to differentiate from com-
petitors, it is important to trace the scientific base of R&D also to understand, from a policy perspective, what are
the scientific domains that are most conducive to innovations and how public funding might be allocated. There-
fore, it is crucial for policymakers and scientists to improve their understanding of the impact of science on technical
progress and innovation. From a research perspective, a large number of works have looked at the magnitude of
patents’ citations to science, which constitutes an interesting indicator to identify the characteristics of the search pro-
cess implemented by firms to develop innovations, the novelty of inventions, and the extent to which knowledge spills
over from the universities to private companies (Katila and Ahuja, 2002; Gittelman and Kogut, 2003; Fleming and
Sorenson, 2004; Ahmadpoor and Jones, 2017; Wang et al., 2017). The extent to which innovations rely on science
varies among different sectors and technologies (Pavitt, 1984; Verbeek et al., 2002). Along this line of reasoning,
Fleming and Sorenson (2004) argue that technologies with many interconnected components may benefit more from
scientific knowledge. Moreover, the use of scientific literature may help inventors explore new fields and discover
novel combinations of knowledge (Arts and Fleming, 2018).
The investigation of the role of (public) science in the production of (private) technological innovations is particularly
relevant in the case of green technologies (OECD, 2010; Popp, 2017; Persoon et al., 2020). Green technologies have
an interesting characteristic in that they utilize new and different combinations of knowledge compared to non-green
technologies, making them novel (Barbieri et al., 2020). These innovations are expected to bring radical change due
to the absence of established environmental best practices and technological trajectories (Verhoeven et al., 2016). A
recent study by Persoon et al. (2020) compares innovations in renewable energy technologies with innovations in fossil
fuel energy technologies and finds that innovations in renewable rely more on science because they are more radical
and are based on novel knowledge combinations and technological breakthroughs, which are associated with scientific
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breakthroughs. Moreover, green technologies are characterized by technological uncertainty and require skills outside
of the firm’s knowledge domain (De Marchi, 2012; Ghisetti et al., 2017). Popp (2017) for example shows that research
funded and performed by the government plays an important role in linking basic and applied research.
Besides the intrinsic novelty of green technologies, previous studies have also shown that these technologies are
more complex than non-green ones, as they involve a wider range of objectives and knowledge inputs (De Marchi,
2012). The increased complexity of green technologies is also evident in the multi-purpose and systemic nature of
environmental innovations (Ghisetti et al., 2015). Environmental technologies are expected to achieve various joint
objectives, such as production efficiency and product quality and involve several dimensions, including design, user
involvement, product-service delivery, institutional requirements, and regulatory frameworks (Carrillo-Hermosilla et
al., 2010; Mazzanti and Rizzo, 2017). Finally, green technologies generate extensive spillovers to subsequent tech-
nological developments and these spillovers apply to very different technological domains and sectors (Barbieri et
al., 2020). Therefore, stimulating the development of these very pervasive technologies might also mean investing in
science that supports the most valuable and impactful inventions. This represents a crucial issue in the current climate
policy debate (Cárdenas Rodríguez et al., 2014; Popp, 2017), since public actors play a significant enabling role in the
development of green technologies as they are more inclined than private investors to invest in projects with a higher
degree of risk (Kapoor and Oksnes, 2011; IRENA and CPI, 2018; Mazzucato and Semeniuk, 2018).

3 Data
In order to explore the determinants of science-based green patents, we rely on the two main sources of data: the
PATSTAT database and the patents’ citations to science collected in Marx and Fuegi, 20201.
The PATSTAT dataset is a comprehensive collection of worldwide patents maintained by the European Patent Office
(EPO). It contains detailed information on approximately 100 million patent documents worldwide, including both
applications and granted patents. The data in PATSTAT cover a broad range of technological fields and geographic
regions and are constantly updated. The PATSTAT database includes a vast range of variables, including information
on patent publications (such as CPC technology class, patent title, and claims), patent citations (both forward and
backward citations), patent family members, legal status events (such as patent grants, abandonments, and expirations),
and patent applicant variables (such as applicant and inventor names, countries, and corporations).
In what follows we will focus on the CPC Y.
The full PATSTAT database contains information about almost 2 Million green patents from 1949 to 2021 2.

Fig.1 presents the number of green patents’ applications by year in PATSTAT.
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Figure 1. Number of green patents by year.

1Available at http://relianceonscience.org. Notice that we adopted an updated version of the database which adopts EMAKG rather
than Microsoft Academic Graph (MAG) in order to form patent-papers linkages. EMAKG is an enhanced version of MAG.

2It should be noted that the information presented is valid as of the time of writing
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The database provided by Marx and Fuegi, 2020 includes patent-to-paper linkages for worldwide patents, which
are referred to as Patent Citations to Science (PCS). In addition to PCS, the database provides information on the
papers themselves, such as the names of the authors, their affiliations, whether the paper has been presented at confer-
ences, its title and abstract, and its field. However, the database does not contain details about the patents. In our work,
we focus on the patents included in Marx and Fuegi, 2020’s database, as they represent the frontier of our analysis,
given that they are at a null distance to science by directly citing papers. Further details on the construction of the
distance metric will be provided in the following sections.
The first key step in our analysis was to merge the two datasets mentioned above. To avoid counting the same patent
multiple times based on the countries where it was registered, we performed the merge at the DOCDB simple family
patent level. The DOCDB is a collection of patent documents that are considered to cover a single invention in several
countries. Hence, DOCDBs gather several patents covering a single invention into a unique identifier. We used parallel
computing tools to carry out the merge operation due to the enormous size of the databases.
After the creation of a unified database, we selected the green patents belonging to CPC technology sectors Y02 and
Y04, as it is common practice in the green literature (see, for example, Angelucci et al., 2018; Altenburg et al., 2020;
Li et al., 2021). We excluded patents whose application filing year was prior to 1975. This is because the average
number of patents realized in the years before 1975 is far below the average number of patents realized in the following
years (see Fig.1). Note that the exclusion operation was performed at the patent level and not at the DOCDB level. We
also exclude patents after 2019, since the decline in patent activity can be readily explained by incompleteness or lack
of up-to-date information.
The resulting merged database includes 1.526.224 patent families (from now on simply patents) and their characteris-
tics. The database consists, moreover, of 165.312 companies, 655.180 individuals, 4461 universities, and 273 hospitals
in 223 countries.
Patent-to-paper links are also included. A patent has been linked to a paper based on whether one or more patents
within a patent family were part of a PCS.
Finally, we constructed a variable listing the patents that a specific patent cited. Based on the latter variable we further
construct other covariates, namely the percentage of green patents cited and the number of citing patents.
To summarize, the final database includes patent-level information such as the country of the inventor, the institution
where the patent has been conceived, and the technological domain as reported by the CPC classification3. Further-
more, the database contains some patent-level covariates among which is the list of cited patents. The latter is key in
constructing the distance measure.
The main analyses in the paper are conducted with USPTO patents only 4 to make them comparable with related
literature (see e.g., Ahmadpoor and Jones, 2017 among others).

4 Methodology
The following section describes the distance metric and the main methodological concepts behind the analysis.

4.1 Distance metric
The construction of the distance metric is based on Ahmadpoor and Jones (2017) work. In their paper, Ahmadpoor
and Jones (2017) propose a new distance measure between a patent and prior scientific advances in a given field, using
patent citations to academic papers. The distance measure is based on the idea that patents that cite papers are closer
to prior scientific advances than those that do not5.
In formal terms, in Ahmadpoor and Jones (2017) a distance metric Di ∈ {1,2,3, . . .} is defined for each patent (or pa-
per) i. This metric is determined by recursively finding the minimum citation distance to the “patent-paper boundary”.
If a patent directly cites a paper, both nodes are assigned Di = 1, indicating the “patent-paper boundary”. If papers
or patents cannot be connected to this boundary at any distance, they are considered “unconnected”. A paper i with
Di = n+1 is one that is cited by a paper j with D j = n and is not cited by any paper k with Dk < n. Similarly, a patent
i with Di = n+1 is one that cites a patent j with D j = n and does not cite any patent k with Dk < n. It is important to

3Those variables were adopted in an expanded version of the database once the distance measure has been constructed
4The analysis was also conducted on overall world patents and are available upon request.
5Ahmadpoor and Jones (2017) define a distance metric among both patents and papers. For the scope of the present work, we only refer to the

distance at the patent level
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note that the graph is directed, with citations traced backward in time using references in each patent and paper, and
jumping from the patent to the paper domain where Di = n 6.
Since this work focuses only on patents, we took the definition of distance for patents and applied a Breadth First
Search (BFS) algorithm to to measure the citation distance of patents to the "patent-paper boundary" following the
idea of Ahmadpoor and Jones, 2017. The approach proposed in Ahmadpoor and Jones (2017), indeed – though not
applying a BFS directly – builds on this idea by recursively defining the distance metric as the minimum citation
distance to the "patent-paper boundary" for each node.
In short, a BFS algorithm is a graph traversal algorithm that starts at a given node (a patent in our case) and explores
all of its neighboring nodes at the current depth level before moving on to the next depth level. BFS is regarded an
efficient algorithm that can efficiently explore and traverse a graph in a systematic and breadth-first manner (for more
details see the Appendix).

The distance measure lies, by construction, in the range {0,+∞}. A patent j has an ∞ distance if it is never reached
by any other patent in terms of citations. In that case, j is said to be an un-connected component.
Figure 2 presents the share of (un-)connected components in our sample.

51.2%
48.8%

Connected
Unconnected

Share of unconnected and connected green patents

Figure 2. Share of connected components when only USPTO patents are kept on the frontier.

The share of connected and (un-)connected components can be also explored by the country of the inventor. This
exercise is reproduced in Appendix D for only the countries where the majority of patents are produced according to
Fig.6 below. The share of unconnected patents seems to be lower in Asian countries where, however, auto-referencing
is strongly persistent as extensively discussed in the Appendix.
Following Ahmadpoor and Jones (2017), we checked the distribution of the distance variable in our sample as shown
in Fig.3.

0

.1

.2

.3

.4

.5

.6

Fr
eq
ue
nc
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

distance

Figure 3. Distance distribution of connectivity.The graph shows a majority of green patents having d = 2.

As it is evident, the majority of patents have a distance of 2 from the patent frontier7. This is in line with Ahmad-
6Please refer to Ahmadpoor and Jones, 2017 for further details.
7This is the case also when considering the whole universe of green patents
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poor and Jones (2017). Specifically, the percentage of green patents having a distance between 2 and 4 constitutes the
30% of the total sample of patents (connected and unconnected) and the 59% of the connected patents. In the same
fashion, patents with a distance between 2 (excluded) and 4 constitutes the 16% of the total sample and the 32% of the
connected components. Finally, patents with a distance between 5 and 7 constitute the 4.8% of the total sample and
the 8% of the connected components.
Following Ahmadpoor and Jones (2017), we also compute the probability of a so-called "home run" defined as being
in the upper 5% of citations received in that field and year. Consistently with Ahmadpoor and Jones (2017) we found
that patents at a distance of 1 to the frontier are highly cited and appear as home-runs around 13% of the time, which
is around the 62.5% of the background rate 8. Other connected patents (i.e., those having Di ≥ 2) were home runs
6% of the time which is slightly lower than the background rate. Finally, disconnected components were found to be
home-runs around 2.5% of the time. Fig.4 summarizes those results.
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Figure 4. Probability of being home-runs by distance values.

The subsequent section will utilize the aforementioned distance measure to discuss the results.

5 Results
This section is organized into two distinct parts: the initial one presents descriptive outcomes concerning the determi-
nants of science-based green patenting, employing the provided distance measure. Here, a patent’s classification as
"science-based" is determined by its proximity to the frontier. In the second part of the section, a more rigorous analy-
sis utilizing machine learning tools (fully described in the Appendix) is provided, with the objective of identifying the
specific features that characterize science-based patents.

5.1 Exploring the determinants of science-based green patents
One notable finding of our study is the use of a distance measure to evaluate the citation impact of green patents based
on their proximity to the frontier. As demonstrated in Figure 5, which present the median and average number of
citations for patents at different distances from the frontier, those closest to the frontier tend to receive more citations
than those further away 9.

8here assumed to be the overall average
9Further analyses are available regarding the overall citation pattern (not limited to USPTO only).
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Figure 5. Citation pattern by distance (median).

An analysis of the relationship between the distance of green patents from the technological frontier and their
citation impact is crucial to understand the determinants of scientific excellence and innovation in the field of envi-
ronmental technology. By assessing this relationship, we can gain insights into the factors that contribute to being
science-based – and hence closer to the frontier – and identify the mechanisms that drive the diffusion of knowledge in
this domain. Yet, since we know that central patents in terms of citations are also those that are closer to the frontier,
by grasping the features that lead a patent to be science-based we are characterizing also the most influential green
patents. Such an understanding is essential in order to appreciate the importance of the descriptive studies that follow.
Specifically, detailed statistics on the distance metric have been built starting from the inventor’s country, the OECD
fields and subfields, the technological class, and the institution owning the patent in an effort to grasp the features that
identify science-based patents.
One such determinant is the inventor’s country. As illustrated in Figure 6, the United States, Germany, Japan, France,
the United Kingdom, China, and Korea exhibit higher numbers of green patents, with a majority of these patents being
situated between a distance of 2 and 3 from the frontier10. While these findings confirm the existence of leaders in the
field, they also highlight the presence of followers, such as Austria, Italy, and Belgium, who may strategically rely on
the green patents of these leaders. The results are confirmed by the literature (see e.g., Li et al., 2021). As an example,
Corrocher and Mancusi (2021) report that the United States, Japan, and Germany are the top three countries in terms
of total green energy patents and also have the most collaborations with other countries in that technological domain.
The paper also notes that China is rapidly catching up and has been increasing its green patenting activities in recent
years.
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Figure 6. Distance distribution by inventor country. The graph shows a majority of green patents being patented in
the US, Japan Germany, and Korea.

After establishing the leaders in green patenting, a natural question arises regarding the scientific basis of green
patents across different areas. Figure 7 displays the median distance to the scientific frontier for green patents citing
frontier patents (i.e. patents at a distance of 1), classified according to the so called Field of Study (FOS) of the paper

10The relative distances among these countries is lower when considering also non-USPTO patents with China catching-up the U.S. and Germany.
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that they cite 11.
In order to achieve our objective, we grouped the frontier patents according to their FOS, hence moving the frontier
of a step forward (indeed, grouping the frontier patents into the FOS(s) of the papers they cite moves the distance of
green patents of a unit toward the frontier). Hence, the resulting distance of green patents citing frontier green patents
lies now between 0 and 1.
We then grouped the patents that were originally at a distance 1 to the patent frontier according to their FOS and
re-computed the distance measure at the FOS level.
By construction, "fields of study (FOS) are organised in a multi-level hierarchy where parent research areas are
fine-grained and multiple. The last MAKG version provides a descriptive classification of fields of study based on
abstracts of publications" (Pollacci, 2022). FOS therefore are referred to papers and are structured in macro areas
(fields) and granular areas (sub-fields). According to Pollacci (2022) "most of the FOS (macro areas) refer to the
so-called STEM disciplines, thus science, technology, engineering and mathematics and any subjects that fall under
these four disciplines as computer science (CS), biology, and chemistry. Conversely, humanities-related disciplines
such as history, art, and philosophy seem characterised by fewer FOS".
The results indicate that Engineering and Natural Sciences are the predominant fields of green patents citing the
frontier patents, with the latter exhibiting a relatively higher average distance than other fields. This finding may be
attributed to the smaller number of green patents in the Humanities, Medical and Health Sciences, and Agricultural
Sciences categories.
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Figure 7. Distance distribution by FOS fields .The graph shows the average distance and frequency of the FOS
fields among green patents.

The same exercise can be repeated with FOS sub-fields rather than FOS fields12. Again, the sub-fields refer to
the paper cited by the frontier patent. Patents are then attributed such a sub-field. The mentioned procedure has been
done in Figure 8. Similarly to Figure 7, Figure 8 reveals a prevalence of FOS sub-fields such as Chemical Sciences,
Electronic Engineer and Materials Engineer confirming the scarcity of green patents with FOS in Arts and Health
Sciences. It is worth noting that the absence of green patents in certain fields does not necessarily imply a lack of
potential for innovation in those areas. There may be various reasons for the limited number of green patents, such as
the level of public and private funding or the regulatory and policy environment.
The empirical evidence presented in Figure 8 underscores the variation in green patenting across different technologi-
cal fields, suggesting the need for technology-specific sustainability policies, as advocated by Söderholm (2020). Our
study extends the analysis of green patenting to specific technological sub-fields across a wide range of countries,
making it the first of its kind. This provides a broader perspective on the role of various fields in green energy inno-
vation. Notably, the dearth of green patents in the Arts and Health Sciences fields highlights potential research and
innovation gaps in these areas pertaining to green energy technologies.

11Such fields are part of the macro-classification provided by Pollacci (2022).
12Such sub-fields are again provided in the EMAKG database
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Figure 8. Distance distribution by FOS subfields . The graph shows the average distance and frequency of the FOS
subfields among green patents.

Figure 9 puts the emphasis on CPC technological classes 13 with a specific focus on the Y CPC class.
Figure 9 displays the technological green classes according to their median distance and the percentage of connected
components within a class among all the patents belonging to that class. CPC class Y represents "emerging cross-
disciplinary technologies" and includes a broad range of subcategories such as "Y02" for technologies or applications
for mitigation or adaptation against climate change, "Y04" for information or communication technologies having an
impact on other technology areas, and "Y10" for emerging technologies not elsewhere classified.
Specifically, the technological classes located in the top-left quadrant of Figure 9 correspond to a higher concentration
of connected components with a lower median distance from the frontier. Conversely, the technological classes located
in the bottom-right quadrant include unconnected patents with a higher distance from the frontier. In other words, class
Y 02P70/521 includes connected green patents with a median distance of 1 to the frontier, whereas Y 10T 16/466 has
almost 51% of connected components and a median distance of its green patents of 12. Notice that the median distance
has been considered rather than the average distance due to the presence of unconnected components in the analysis.
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Figure 9. Median distance and percentage of connected components by technological class

The central CPC classes in green patenting are Y02P, Y10S, Y02T and Y02E which are, on average, closer to
the frontier and have patents that are more connected to other green patents. These classes include technologies
related to the production or processing of goods, as well as to transport. This is supported by evidence from several
studies, including Nomaler, Verspagen, et al. (2021), which, in an effort to catch technological trajectories in the green
landscape, show that these classes have remained consistently central to green patenting over the years. Despite the
growing interest in the Y sub-classes as a means to assess the centrality of green patenting, the literature on this topic
remains limited. To the best of our knowledge, few studies have provided empirical evidence on the predominance
of one Y sub-class over another in terms of centrality. Moreover, the available empirical evidence has either led
to contrasting conclusions (Barbieri et al., 2022) or has highlighted the challenges that the literature faces in fully
capturing the centrality of green classes (Higham et al., 2022).

13The full set of technological classes is available at https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
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Figures 10 illustrates the distribution of technological green classes based on their median distance and the proportion
of patents belonging to technological class i within the overall set of green patents. The results corroborate the findings
of Figure 9 highlighting also the importance of class Y02 in terms of abundance with respect to other green classes
at a low distance. It is important to note that the results presented in Figure 9 are not adjusted for the presence of
unconnected components within technological classes. Specifically, Figure 10 do not take into account the proportion
of unconnected components in both high-frequency and low-frequency classes14.
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Figure 10. Median distance and percentage of patents by technological class

Figure 11 extends the previous analysis by examining the full range of density, as opposed to focusing solely on
medians. To enhance the clarity of the plot, we selected a subset of technological classes for presentation purposes.
The plots show a higher presence of low-distance patents within each technological class presented. This is plausible
as the selected classes belong to either engineering or natural science fields.
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Figure 11. Distribution of distances among the connected patents .

The final part of the descriptive analysis examines the institutional determinants of science-based green patents.
We consider five types of institutions, namely private organizations, individuals, public institutions, hospitals, and
universities. Figure 12 presents the median distance of green patents for each organization type, accounting for patents
with infinite distances in the calculations. Figure 13 repeats the same analysis without including patents with infinite
distances.

14It should be noted that, since we compute the median, the proportion of unconnected components in low-distance classes is assumed to be less
than 50%.
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Our findings indicate that patents originating from hospitals, universities, and companies affiliated with universities
tend to exhibit a greater degree of science-based patents. In contrast, green patents obtained by individuals and
companies exhibit a larger deviation from the frontier (in line with Popp, 2019). These outcomes remain consistent
even when company-related and university-related organizations are categorized respectively as "COMPANY" and
"UNIVERSITY"15.

The distribution of patents across institutions is presented in Figure 14. The pie chart demonstrates that firms hold
the largest proportion of green patents at 64.8%, followed by private individuals at 31.7%, universities at 1.6%, and
government institutions at 1.9%. It is interesting to notice that when including non-USPTO patents the difference in
the share of patents held by firms and individual narrows with a percentage of green patents for firms at 49.2% and a
percentage detained by individuals at 45.5%. This evidence can be explained in several manners. For instance, there
might be entry barriers for individuals willing to submit their patents to the USPTO (e.g. need for external financing
or strict rules for patenting). Or, simply, individuals from non-US countries tend to patent in the office of their country
of origin, which, however, marks the U.S. individuals as outliers due to the disproportion among individuals green
patenting and firm patenting in the country.
Overall the above results suggest that organizations with greater financial resources are more likely to generate green
patents compared to private individuals. However, the production of such patents depends on the presence of science-
based green patents held by universities and other entities.

64.8%
1.9%

31.7%

1.6%

FIRM
GOV
INDIVIDUAL
UNI

Share of patents by institutions and individuals (USPTO frontier)

Figure 14. Share of green patents among institutions .The graph shows a higher presence of green patents among
companies, followed by individuals.

Finally, Figure 15 illustrates the distribution of distances between green patents across institutions. Despite produc-
ing fewer green patents, universities tend to generate more science-based patents than other institutions, as expected.
Universities tend to produce more science-based patents. Notably, firms tend to adopt green technologies that build
upon existing knowledge, as consistently observed across both analyses.

15The results are available upon request.
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Prior to conducting the Machine-Learning analyses, it is important to provide a summary of the main descrip-
tive findings thus far. This section emphasizes the significance of examining the determinants of science-based green
patents, which serve as central nodes in the citation pattern. Our analysis reveals that the leading countries in green
patenting are the United States, Germany, Japan, France, the United Kingdom, China, and Korea, with a median dis-
tance to the frontier of their patents ranging between 2 and 3. In terms of paper’s FOS (macro)fields, the most prolific
areas in green patents are Natural Science and Engineering, while the least prolific areas are the Arts and Humanities
(as described by Fig.7). With regards to technological classes, our findings show a predominance of Y02P, Y02T,
Y10S and Y02E classes in terms of both frequency and percentage of connected components within patents classified
under these classes. This evidence is partially supported by the presence of start up clusters in these CPC technological
field which, according to Marra et al. (2017), foster science-based green production. Further evidence supporting the
findings lie on the known complexity of the fields of the production chain of the Y02P, Y02T, Y10S and Y02E classes
(as shown in Balland and Boschma, 2022).
In conclusion, science-based green patents are primarily generated within universities, public institutions, and compa-
nies associated with universities. However, private companies and individuals possess a greater share of green patents
in terms of quantity. We believe that this is due to the fact that the former can rely on substantial financing from stake-
holders, while the latter benefit from greater flexibility and encounter less bureaucracy compared to organizations.

5.2 Assessing the determinants of science-based green patents
The current study employs machine learning techniques to carry out an analysis on five databases, i.e. the original
database denoted as Overall, which contains Y and X variables and its partitions into four decades (1975-1985, 1986-
1996, 1997-2007, and 2008-2020) to observe changes in relevant feature selection over time. Additionally, to address
potential issues with independence between the databases, we conducted a robustness check by including an analysis
of the Overall dataset. Regarding the dataset used for the machine learning analysis – and with respect to the dataset
employed for the descriptive analyses – it included technology, country, and year dummies. These variables were
included to account for possible fixed effects and to allow for their selection by the machine learning models as
determinants X . The outcome variable Y is represented by a binary indicator that measures the degree of science-
based attributes of a DOCDB family. Specifically, Y takes on a value of 1 if the majority of green patents within a
DOCDB family have a distance metric less than or equal to 2. Additionally, we performed robustness checks that
yielded similar results when the distance metric was relaxed to be less than or equal to 3, 4, and 5, respectively.
As aforementioned, Section 5.1 provided a descriptive summary of the key features indicative of a science-based green
patent, which included inventor countries such as the United States, Korea, Japan, France, the UK, and Germany; a
high number of citations by other patents; belonging to specific classes (Y02A 50/30, Y02P 70/521, Y02D 30/70,
Y02T 30/00 and Y02E 20/30); and being a patent from a University, hospital or government-affiliated non-profit
organization linked to a university.
To formally test whether these features are sufficient to describe a science-based green patent, we first examined which
machine-learning classifiers in Tab. Appx.4 (see Appendix) performed better in predicting science-based patents. We
then listed and interpreted the features selected by the best-performing classifiers each decade and overall, which are
considered more important for the prediction task. A complete list of the variables selected in each decade and for the
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overall sample is provided in Tab. Appx.5 of the Appendix. Specifically, since RF displays a better performance as
compared to other machine-learning models (see Table Appx.4), the features are selected using RF. In particular, the
Boruta algorithm (described in the Appendix) is utilized to compute the importance metric that contributes the most
to the prediction of science-based features.
Each feature’s importance measures its contribution to a machine learning model’s predictive performance. In RF, the
feature importance is estimated by the decrease in impurity measure resulting from splitting on a feature. The algorithm
builds decision trees using different random subsets of features, and the feature importance scores are aggregated over
all trees in the forest. These scores can be used for feature selection and gaining insights into the data-generating
process16.
A ranking of the variables according to the RF classifier is then made (see Fig. Appx.2) accounting at the same time
for the number of times that the variable is selected by a model and the average importance attributed to such a variable
(i.e. the information contained in Fig. Appx.2). Specifically, as a pre-processing step, we just considered the variables
that have been selected by at least 3 models out of 5. Secondly, an index, Ip is constructed by multiplying the number
of models that select the remaining variables from step one by their average importance. The resulting rank is reported
in Tab.1 and represents the X̃ ⊂ X variables.

Ranking Feature Number of models Average Importance Ip

1st % of green cited 5 21.39 106.95
2nd Number citing 5 20.54 102.70
3rd US 5 17.44 87.20
4th University 5 16.73 83.65
5th JP 5 14.92 74.60
6th Y02E 70 5 14.40 72.00
7th DE 5 13.10 65.50
8th GB 5 11.72 58.60
9th Y02E 10 4 13.26 53.04
10th Y02B 10 4 12.20 48.80
11th FR 4 11.51 46.04
12th KR 5 8.46 42.30
13th Y02E 50 4 9.86 39.44
14th Gov. 3 12.34 37.02
15th Y02B 90 3 11.14 33.42
16th Y02T 30 4 8.15 32.60
17th Y02D 30 3 10.53 31.59
18th Y02P 80 3 9.65 28.95
19th Y04S 30 5 5.45 27.25
20th Y02B 40 3 8.57 25.71
21st Y02P 70 4 6.32 25.28
22nd Y04S 10 3 7.93 23.79
23rd NL 3 7.93 23.79
24th CA 3 7.30 21.90
25th Y02B 50 3 6.90 20.70

Table 1. First 25 features ranked by importance in determining how much a patent is science-based according to the
index.

The countries identified through machine learning are observed to be the same as those identified by descriptive
statistics. Notably, being affiliated with a university or government institution emerges as a common factor. In terms of
sectors, the descriptive analysis identifies Y02A 50/30, Y02P 70/521, and Y02D 30/70 as significant. However, among
these, only Y02D 30 and Y02P 70 are highlighted as relatively important through the machine learning analysis, but
not to the same extent as indicated by the descriptive analysis.

16The reader is referred to the Appendix for a more detailed explanation
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The machine learning analysis reveals a surprising and crucial finding, which differs from the descriptive analysis:
the percentage of green patents cited by the patent plays a significant role in determining whether a green patent is
science-based. This finding has important implications, as it suggests that the citation behavior of green patents can
provide insights into their scientific value. Specifically, examining the percentage of green and non-green patents cited
by a green patent could help identify the science-based patents and distinguish them from other green patents.
This result’s significance is rooted in the literature, as the role of citation analysis in assessing the scientific and
technical quality of patents has been extensively studied. Several studies, indeed, have shown that patent citations can
be used as a measure of technological importance and that highly cited patents tend to be more valuable and more
likely to be licensed or litigated (Jaffe et al., 2005). In the context of green patents, however, the role of citations in
determining the scientific basis of a patent has not been fully explored. Recent studies have shown that green patents
are more likely to cite non-patent literature, such as scientific articles and technical reports, than traditional patents
(see e.g., Chai et al., 2020). Building on these findings, our results empirically demonstrate that the number of green
patents cited by a green patent is a critical factor in determining its scientific basis. Specifically, we found that green
patents that cite a higher number of other green patents are more likely to be science-based. This finding has important
implications for the evaluation and management of green technology portfolios.
To ensure the robustness of our findings and examine the dynamics of the selected variables over time, Figure 16 has
been constructed as follows. The importance of each selected variable ranked in Tab.1 was averaged over the number
of iterations of the Boruta algorithm in each decade. A normalization step followed in order to characterize the weights
of each variable for each decade. The weighted average for each decade is then reported in Figure 16.
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Figure 16. Dynamics of the first 11 selected variables from Tab.1

Based on Figure 16, it is clear that certain top-ranking features, such as the classes Y02E 10, Y02E 70, and the
country UK, have experienced a decrease in their average importance over time, whereas the majority have either
shown constant growth over time, as seen in the country-variables Korea, Germany, and Japan or remained stable at
their initial level of importance, as observed in the variable University. Notably, the percentage of green citations has
consistently outperformed other features in terms of importance, which confirms the findings of Table 1, even when
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considering the temporal dimension. This observation is critical as it sheds light on the significance of the expanding
literature that compares brown technologies to pure green technologies, as noted in works such as Heal (2007) and
Skinner and Valentine (2023), among others. According to our results, while being classified as the former category
does not guarantee any level of scientific basis or citation centrality, being part of the latter category is strongly
correlated with scientific validity. In other words, being part of the "green network" guarantees a scientific basis for
the patent.
Other notable results concern emerging countries in green patenting such as Korea and Japan which seemed to have
almost caught up with traditionally prolific countries in terms of green patenting such as the USA.

6 Discussion and Conclusions
The present article makes two main contributions to the literature on green innovation. First, it offers a definition of
being "science-based" in the context of green patents. Second, having established that science-based green patents
are central in the network of patent citations, it provides both a descriptive and a formal approach to identifying the
features that characterize science-based patents.
Starting from a unique database obtained by merging the PATSTAT database and Marx and Fuegi (2020)’s database,
we have operationally defined a green patent as being science-based using a distance measure from a "patent-paper"
frontier, as described by Ahmadpoor and Jones (2017). Specifically, we consider a patent i to be science-based if its
distance from the frontier, denoted as Di, is equal to n+ 1, where n is the distance of a patent j cited by i from the
frontier and there are no other patents cited by i that are closer to the frontier than j. This distance measure allows
for the possibility of unconnected components having a distance of infinity. We have calculated this distance measure
using the breadth-first search (BFS) algorithm.
By defining this distance measure, we were able to establish a relationship between the distance of a green patent from
the frontier and its citation path, finding an inverse relationship between the two.
Using the previously defined distance measure, we employed descriptive statistics to characterize science-based green
patents based on the country of the inventor (i.e., the birthplace of knowledge), the OECD (sub)-fields, the techno-
logical classes, and the institution responsible for inventing the green patent. Our findings indicate a preponderance
of green patents originating from the United States, Germany, Japan, France, the United Kingdom, China, and Korea.
On average, the distance of these patents from the frontier ranged from 2 to 3, indicating a continued reliance on past
innovations. The top OECD fields in terms of green patenting are, as expected, Natural Science and Engineering. We
have identified the central CPC classes in green patenting as Y02P, Y10S, and Y02T. These classes are closer to the
frontier and have patents that are more closely connected to other green patents.
In addition, our descriptive analysis reveals that green patents belonging to firms and individuals tend to be part of
larger connected components, whereas those belonging to universities and public institutions tend to be more science-
based. These findings suggest that companies, having greater financial resources, are able to produce more green
patents than individuals. However, the production of such patents ultimately depends on the presence of science-based
green patents held by universities and other entities.
Subsequently, we conducted a formal analysis utilizing machine learning techniques to provide statistical support for
the descriptive findings. The machine learning classifiers identified similar features to those observed in the descrip-
tive analysis, with a few notable exceptions. Specifically, the machine learning analysis identified the percentage of
green patents cited as a top-ranked and robust determinant for a patent to be considered science-based. This result is a
significant finding, as it suggests that the citation behavior of green patents can offer insights into their scientific worth.
Motivated by this discovery, we investigated the dynamics of the top-ranked features selected by the machine-learning
algorithm. Our findings indicate that the percentage of green patents cited is a more stable and robust determinant
of scientific value than the other features we considered. This underscores the importance of pursuing "pure green"
innovations, as opposed to "brown" innovations (Heal, 2007), in order to be considered science-based and therefore
central in the green citation network. Importantly, the dynamics plot highlights the emergence of Korea and Japan
among the key green patent producers.
In conclusion, our study has provided a novel definition of being "science-based" in the context of green patents and
identified the key features that characterize science-based green patents. Our findings underscore the importance of
pursuing pure green innovations, as opposed to brown innovations, in order to be considered science-based and central
in the green citation network.
Our study is situated in the broader literature on green innovation, which has shown that green innovation is critical
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for achieving sustainability goals and addressing climate change (e.g., Neufeldt et al., 2021; Kivimaa and Kern, 2016;
Tukker et al., 2016). Moreover, past research has found that green patents are more likely to be cited and to have a
broader impact than non-green patents (e.g., Kemp et al., 2019; Li and van’t Veld, 2015) and tried to find out more
about the determinants of the most cited green patents (Chai et al., 2020). However, our study is unique in its focus
on science-based green patents and its use of a distance measure to operationalize this concept. To the best of our
knowledge, ours is the first empirical attempt to provide a definition of science-based green patents and to determine
the features of such green patents.
The novelty and contribution of our findings are further underscored by their relevance for policymakers and indus-
try practitioners. For instance, our finding that the percentage of green patents cited is a top-ranked determinant of
scientific value can inform patent examination practices, as well as research and development efforts aimed at devel-
oping science-based green technologies. Moreover, our identification of the central CPC classes in green patenting
(Y02P, Y10S, and Y02T) can inform technology transfer policies and investment decisions aimed at promoting green
innovation in these areas. Ultimately, in a more general way, our results are in line with past studies that have shown
the positive impact of green innovation on economic growth, environmental sustainability, and social welfare (Kemp
et al., 2019)
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Appendix

A Auto-citation patterns
One of the main reasons why we conducted the analyses on USPTO patents only is the presence of biases arising from
auto-citation patterns. Tab.Appx.1 presents the percentage of patents that belong to the inventor and/or applicant’s
country, denoted as Pc, and cite at least one patent within the same country, denoted as CPc. The second column
repeats this exercise by considering the application authority instead of the country of the inventor and/or applicant,
with Papp and CPapp representing Pc and CPc, respectively when the country of the inventor and/or applicant is taken
into account.

Table Appx.1. Share of patents citing at least one patent within the same country for a sample of countries.

Country Pc/CPc Papp/CPapp
AU .248 .0512
BR .1655 .0315
CA .3125 .0604
CN .446 .2466
DE .5089 .1457
DK .146 .0332
EP .423 .0920
ES .193 .0427
FR .282 .0754
GB .278 .0810
IT .1635 .0293
JP .4902 .2528
KR .32 .1364
NL .147 .0427
NO .139 .0293
NZ .096 .0194
SE .184 .0333
US .95 .2444
WO .339 .0709

The evidence from Table Appx.1 clearly indicates that China stands out with a much higher share of patent self-
citation when both Pc/CPc and Papp/CPapp are considered together. A similar analysis is conducted for patents on the
frontier to examine the proportion of domestically authored papers cited by science-based patents worldwide. Notably,
45% of China’s patents on the frontier cited papers written by Chinese authors, surpassing the average self-citation
rate of approximately 32%. These findings overall enforce the choice of USPTO patents only over the entire sample
of world patents.

B The BFS algorithm
Given a graph G = (V,E), where V is the set of vertices (nodes) and E is the set of edges, the BFS algorithm starts at
a given source vertex s ∈V and explores all its neighboring vertices at the current depth level before moving on to the
next depth level. The algorithm maintains a queue Q of vertices to be visited, and a set S of visited vertices to avoid
visiting them again. Initially, Q contains only the source vertex s, and S is empty. At each iteration, the algorithm
dequeues a vertex v from Q, marks it as visited by adding it to S, and explores its neighboring vertices that have not
been visited yet. For each neighboring vertex w of v that is not in S, the algorithm adds it to Q and marks its distance
d(w) from the source vertex as d(w) = d(v)+1, where d(v) is the distance of v from the source vertex. The algorithm
stops when all vertices reachable from the source vertex have been visited, or when Q becomes empty.
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The BFS algorithm can be easily visualized as a tree rooted at the source vertex, where each vertex is connected to its
parent vertex by an edge of the tree, and its children’s vertices are the neighboring vertices discovered by the algorithm
at the current depth level. Figure Appx.1 17 shows an example of a BFS tree starting from vertex A in a directed graph,
where the edges are labeled with their weights. The vertices are visited in the order A, B, C, D, E, F, G, and H, and
their distances from A are 0, 1, 1, 2, 2, 2, 3, and 3, respectively. The BFS algorithm has the property that the distances
computed by it are the minimum distances from the source vertex to each reachable vertex in the graph, which makes
it useful for many applications such as shortest path, connected components, and network analysis.

Figure Appx.1. An example of a BFS tree starting from the vertex A in a directed graph, where the edges are labeled
with their weights. The vertices are visited in the order A, B, C, D, E, F, G, and H, and their distances from A are 0, 1,
1, 2, 2, 2, 3, and 3, respectively.

C Average distance by CPC class
The following table shows the average distance of CPC classes. It displays how the green classes classified in Y have,
on average, a lower distance to the frontier than other CPC classes.

17The BFS graph image used in this paper is adapted from the Hackr.io website, licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

18



CPC Super-class Average CPC class Average CPC super-class

A01B A 2.145
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2.350

A01C A 2.484
A01D A 2.004
A01F A 1.730
A01G A 2.877
A01H A 3.966
A01J A 1.705
A01K A 2.729
A01L A 1.781
A01M A 2.495
A01N A 2.202
A21B A 1.943
A21C A 1.996
A21D A 2.474
A22B A 1.941
A22C A 2.010
A23B A 2.399
A23C A 2.292
A23D A 2.266
A23F A 2.563
A23G A 2.090
A23J A 2.123
A23K A 2.390
A23L A 2.726
A23N A 2.523
A23P A 2.394
A23V A 3.729
A23Y A 3.004
A24B A 2.614
A24C A 1.708
A24D A 2.090
A24F A 2.729
A41B A 2.977
A41C A 2.751
A41D A 2.616
A41F A 2.444
A41G A 3.115
A41H A 2.028
A42B A 2.318
A42C A 2.269
A43B A 2.106
A43C A 2.039
A43D A 2.113
A44B A 2.386
A44C A 2.233
A44D A 2.261
A45B A 2.449
A45C A 2.654
A45D A 2.327
A45F A 2.719
A46B A 2.044
A46D A 1.773
A47B A 2.271
A47C A 2.328
A47D A 2.516
A47F A 2.272
A47G A 2.503
A47H A 2.095
A47J A 2.261
A47K A 2.302
A47L A 2.179
A61B A 2.202
A61C A 2.076
A61D A 2.205
A61F A 2.047
A61G A 2.281
A61H A 2.800
A61J A 2.438
A61K A 2.258
A61L A 2.329
A61M A 2.099
A61N A 2.192
A61P A 2.197
A61Q A 2.056
A62B A 2.251
A62C A 2.559
A62D A 2.452
A63B A 2.497
A63C A 1.672
A63D A 2.091
A63F A 2.741
A63G A 2.975
A63H A 2.409
A63J A 2.513
A63K A 1.960
B01B B 1.898


2.208

B01D B 2.264
B01F B 2.199
B01J B 2.403
B01L B 2.224
B02B B 3.486
B02C B 2.681
B03B B 2.130
B03C B 2.303

CPC Super-class Average CPC class Average CPC super-class

B03D B 2.503


2.208

B04B B 1.802
B04C B 1.824
B05B B 2.218
B05C B 2.503
B05D B 2.639
B06B B 2.463
B07B B 2.361
B07C B 2.236
B08B B 3.012
B09B B 2.337
B09C B 3.026
B21B B 2.082
B21C B 2.032
B21D B 2.324
B21F B 2.268
B21G B 1.220
B21H B 1.849
B21J B 2.264
B21K B 2.421
B21L B 1.893
B22C B 2.454
B22D B 2.184
B22F B 2.882
B23B B 2.163
B23C B 2.305
B23D B 2.045
B23F B 1.942
B23G B 2.176
B23H B 2.510
B23K B 2.547
B23P B 2.800
B23Q B 2.333
B24B B 2.682
B24C B 2.281
B24D B 2.386
B25B B 2.379
B25C B 1.920
B25D B 1.697
B25F B 2.218
B25G B 2.458
B25H B 2.552
B25J B 2.862
B26B B 2.006
B26D B 2.251
B26F B 2.121
B27B B 2.085
B27C B 2.493
B27D B 1.952
B27F B 2.004
B27G B 1.892
B27H B 1.191
B27J B 2.097
B27K B 2.768
B27L B 2.187
B27M B 2.008
B27N B 2.071
B28B B 2.383
B28C B 2.444
B28D B 2.544
B29B B 2.160
B29C B 2.219
B29D B 2.337
B29K B 2.375
B29L B 2.396
B30B B 1.987
B31B B 2.052
B31C B 1.420
B31D B 2.140
B31F B 1.939
B32B B 2.711
B33Y B 2.801
B41B B 0.687
B41C B 2.067
B41D B 1.500
B41F B 1.681
B41G B 0.806
B41J B 2.629
B41K B 2.246
B41L B 2.426
B41M B 2.588
B41N B 1.880
B41P B 1.776
B42B B 2.296
B42C B 2.191
B42D B 1.998
B42F B 1.840
B42P B 1.400
B43K B 2.348
B43L B 2.364
B43M B 1.929
B44B B 1.749
B44C B 2.112
B44D B 2.054

19



CPC Super-class Average CPC class Average CPC super-class

B44F B 1.708


2.208

B60B B 2.102
B60C B 2.079
B60D B 2.233
B60F B 2.592
B60G B 1.896
B60H B 2.137
B60J B 1.863
B60K B 2.294
B60L B 2.793
B60M B 2.021
B60N B 1.895
B60P B 2.347
B60Q B 2.261
B60R B 2.104
B60S B 1.852
B60T B 1.823
B60V B 1.574
B60W B 2.521
B60Y B 3.318
B61B B 2.156
B61C B 2.326
B61D B 2.048
B61F B 2.031
B61G B 2.122
B61H B 2.300
B61J B 0.989
B61K B 1.988
B61L B 2.355
B62B B 2.288
B62C B 0.930
B62D B 2.160
B62H B 2.586
B62J B 2.788
B62K B 2.473
B62L B 2.435
B62M B 2.298
B63B B 2.462
B63C B 2.453
B63G B 2.415
B63H B 2.406
B63J B 2.613
B64B B 2.136
B64C B 2.389
B64D B 2.418
B64F B 2.607
B64G B 2.339
B65B B 2.142
B65C B 2.372
B65D B 2.020
B65F B 2.377
B65G B 2.054
B65H B 2.055
B66B B 2.326
B66C B 2.105
B66D B 2.265
B66F B 2.257
B67B B 2.012
B67C B 1.970
B67D B 2.096
B68B B 1.788
B68C B 1.852
B68F B 1.750
B68G B 1.943
B81B B 3.075
B81C B 3.116
B82B B 2.820
B82Y B 3.042
C01B C 2.647



2.380

C01C C 1.983
C01D C 2.769
C01F C 2.341
C01G C 2.913
C01P C 2.609
C02F C 2.766
C03B C 2.196
C03C C 2.325
C04B C 2.720
C05B C 3.795
C05C C 2.472
C05D C 2.542
C05F C 2.407
C05G C 3.629
C06B C 2.194
C06C C 2.290
C06D C 2.105
C06F C 1.516
C07B C 2.122
C07C C 2.104
C07D C 2.178
C07F C 2.407
C07G C 2.291
C07H C 2.234
C07J C 2.102
C07K C 2.485
C08B C 2.312
C08C C 2.462

CPC Super-class Average CPC class Average CPC super-class

C08F C 2.278


2.380

C08G C 2.379
C08H C 2.574
C08J C 2.888
C08K C 2.949
C08L C 2.846
C09B C 1.916
C09C C 2.083
C09D C 2.755
C09F C 2.494
C09G C 3.611
C09H C 1.240
C09J C 2.856
C09K C 2.621
C10B C 2.229
C10C C 2.743
C10F C 0.821
C10G C 2.425
C10H C 0.667
C10J C 2.186
C10K C 2.363
C10L C 2.357
C10M C 2.381
C10N C 2.415
C11B C 2.011
C11C C 2.317
C11D C 1.866
C12C C 1.865
C12F C 1.620
C12G C 2.296
C12H C 1.937
C12J C 2.228
C12L C 0.571
C12M C 2.497
C12N C 2.571
C12P C 2.683
C12Q C 2.652
C12R C 3.048
C12Y C 3.189
C13B C 1.764
C13K C 2.233
C14B C 1.797
C14C C 2.045
C21B C 2.056
C21C C 2.099
C21D C 3.061
C22B C 2.454
C22C C 3.130
C22F C 3.360
C23C C 2.610
C23D C 2.012
C23F C 2.651
C23G C 2.383
C25B C 2.710
C25C C 2.154
C25D C 2.713
C25F C 2.564
C30B C 2.758
C40B C 2.534
D01B D 1.954



2.124

D01C D 1.652
D01D D 3.146
D01F D 3.101
D01G D 1.545
D01H D 1.554
D02G D 2.562
D02H D 1.459
D02J D 1.984
D03C D 1.365
D03D D 2.190
D03J D 1.616
D04B D 1.959
D04C D 2.216
D04D D 2.232
D04G D 2.370
D04H D 2.294
D05B D 2.234
D05C D 2.743
D05D D 1.952
D06B D 1.978
D06C D 2.022
D06F D 2.207
D06G D 2.241
D06H D 1.992
D06J D 0.935
D06L D 1.692
D06M D 2.786
D06N D 2.711
D06P D 2.370
D06Q D 2.145
D07B D 2.032
D10B D 2.740
D21B D 2.118
D21C D 3.175
D21D D 1.852
D21F D 1.577
D21G D 1.553
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D21H D 2.150
}

2.124
D21J D 2.562
E01B E 1.837



2.211

E01C E 2.327
E01D E 2.924
E01F E 2.122
E01H E 2.452
E02B E 2.377
E02C E 1.989
E02D E 2.591
E02F E 2.566
E03B E 2.272
E03C E 2.166
E03D E 2.415
E03F E 2.347
E04B E 2.130
E04C E 2.071
E04D E 1.981
E04F E 2.122
E04G E 2.170
E04H E 2.443
E05B E 1.952
E05C E 1.883
E05D E 1.920
E05F E 2.061
E05G E 1.842
E05Y E 1.934
E06B E 1.974
E06C E 2.201
E21B E 2.244
E21C E 2.072
E21D E 2.285
E21F E 2.860
F01B F 1.983



2.118

F01C F 2.395
F01D F 2.069
F01K F 2.337
F01L F 1.952
F01M F 2.087
F01N F 2.057
F01P F 2.134
F02B F 2.061
F02C F 2.320
F02D F 2.105
F02F F 1.946
F02G F 2.283
F02K F 2.215
F02M F 2.019
F02N F 2.371
F02P F 2.123
F03B F 2.355
F03C F 1.685
F03D F 2.209
F03G F 2.763
F03H F 2.351
F04B F 2.298
F04C F 2.524
F04D F 2.312
F04F F 2.353
F05B F 2.166
F05C F 1.776
F05D F 2.521
F15B F 2.153
F15C F 1.518
F15D F 2.261
F16B F 1.959
F16C F 2.050
F16D F 1.871
F16F F 1.967
F16G F 2.031
F16H F 2.093
F16J F 1.914
F16K F 2.209
F16L F 1.965
F16M F 2.700
F16N F 2.206
F16P F 1.734
F16S F 0.0833
F16T F 1.794
F17B F 1.150
F17C F 2.229
F17D F 2.751
F21H F 0.667
F21K F 3.109
F21L F 2.807
F21S F 2.576
F21V F 2.765
F21W F 2.900
F21Y F 2.787
F22B F 2.103
F22D F 1.410
F22G F 1.594
F23B F 2.170
F23C F 2.073
F23D F 2.001
F23G F 2.357
F23H F 1.347

CPC Super-class Average CPC class Average CPC super-class

F23J F 2.174


2.118

F23K F 1.969
F23L F 2.051
F23M F 1.330
F23N F 2.054
F23Q F 2.000
F23R F 1.937
F24B F 2.040
F24C F 2.176
F24D F 2.051
F24F F 3.273
F24H F 2.198
F24S F 2.238
F24T F 2.638
F24V F 2.358
F25B F 2.763
F25C F 2.950
F25D F 2.722
F25J F 1.823
F26B F 2.191
F27B F 1.904
F27D F 1.923
F27M F 0.291
F28B F 1.853
F28C F 1.940
F28D F 2.244
F28F F 2.218
F28G F 2.022
F41A F 2.053
F41B F 2.546
F41C F 2.754
F41F F 1.918
F41G F 2.077
F41H F 2.258
F41J F 2.158
F42B F 1.826
F42C F 1.598
F42D F 2.432
G01B G 2.436



2.469

G01C G 2.664
G01D G 2.170
G01F G 1.955
G01G G 2.208
G01H G 2.668
G01J G 2.571
G01K G 2.337
G01L G 2.287
G01M G 2.731
G01N G 2.480
G01P G 2.088
G01Q G 2.332
G01R G 2.615
G01S G 2.490
G01T G 2.432
G01V G 2.284
G01W G 3.987
G02B G 2.556
G02C G 2.294
G02F G 2.863
G03B G 3.308
G03C G 2.145
G03D G 1.763
G03F G 2.598
G03G G 3.255
G03H G 2.488
G04B G 1.901
G04C G 1.999
G04D G 1.931
G04F G 3.069
G04G G 2.426
G04R G 2.340
G05B G 2.876
G05D G 2.675
G05F G 2.827
G05G G 2.006
G06C G 0.250
G06E G 2.377
G06F G 2.702
G06G G 2.346
G06J G 0.547
G06K G 3.132
G06M G 1.489
G06N G 4.399
G06Q G 2.984
G06T G 3.020
G07B G 2.345
G07C G 2.438
G07D G 2.137
G07F G 2.208
G07G G 2.848
G08B G 2.685
G08C G 2.929
G08G G 2.902
G09B G 2.991
G09C G 2.941
G09D G 1.025
G09F G 2.606

21



CPC Super-class Average CPC class Average CPC super-class

G09G G 2.807


2.469

G10B G 0.857
G10C G 2.530
G10D G 2.587
G10F G 2.529
G10G G 2.880
G10H G 2.913
G10K G 2.101
G10L G 2.524
G11B G 2.546
G11C G 2.689
G12B G 0.426
G16B G 8.228
G16C G 2.632
G16H G 3.090
G16Z G 2.113
G21B G 2.879
G21C G 1.973
G21D G 3.065
G21F G 1.965
G21G G 2.396
G21H G 3.761
G21J G 2.24
G21K G 2.588
G21Y G 2.28
H01B H 2.883



2.480

H01C H 2.355
H01F H 2.607
H01G H 3.142
H01H H 2.043
H01J H 2.333
H01K H 2.029
H01L H 2.644
H01M H 2.768
H01P H 2.603
H01Q H 2.282
H01R H 2.295
H01S H 2.445
H01T H 2.258
H02B H 1.935
H02G H 2.207
H02H H 2.554
H02J H 2.812
H02K H 2.265
H02M H 2.577
H02N H 2.914
H02P H 2.586
H02S H 3.142
H03B H 2.704
H03C H 1.989
H03D H 2.136
H03F H 2.413
H03G H 2.505
H03H H 2.553
H03J H 2.186
H03K H 2.609
H03L H 2.483
H03M H 2.630
H04B H 2.572
H04H H 2.650
H04J H 2.664
H04K H 2.919
H04L H 2.599
H04M H 2.533
H04N H 2.640
H04Q H 2.439
H04R H 2.411
H04S H 2.508
H04W H 2.565
H05B H 2.461
H05C H 2.016
H05F H 1.673
H05G H 2.110
H05H H 2.665
H05K H 2.705
Y02A Y 2.907



2.188

Y02B Y 2.839
Y02C Y 0.733
Y02D Y 2.447
Y02E Y 2.848
Y02P Y 2.020
Y02T Y 2.491
Y02W Y 2.741
Y04S Y 2.253
Y10S Y 0.449
Y10T Y 2.344
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For the sake of clarity, Fig.Appx.2 has been included below representing the average distances for a subset of CPC
classes of the Table above. As it is evident from the picture, the green classes included in the CPC super-class Y have
a lower average distance.
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Figure Appx.2. Sub-sample of average distance by CPC class and super-class (big circles) The figure shows the
average distance of a subset of CPC sub-classes present in the dataset. The empty circle represent the overall average
of the CPC super-classes.

D (Un-)Connected components by inventor country
The present section displays the share of connected and unconnected components by the inventor country. The inventor
country is chosen rather than the applicant one as we wanted to focus on the place where the knowledge developed.
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Figure Appx.1. Connected and unconnected components by inventor country considering the whole universe of
patents and only those in the USPTO.

E CPC sectors legend
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The CPC classification is a classification of patents that improves the older version IPC with a novel class Y. The first
letter of the classification is the section symbol (e.g. the letter Y stems from emerging cross-sectional technologies).
This is followed by a two-digit number to give a "class symbol" (e.g., "A01" represents "Agriculture; forestry; animal
husbandry; trapping; fishing"). The final letter makes up the "subclass". The subclass is then followed by a 1- to
3-digit "group" number, an oblique stroke, and a number of at least two digits representing a "main group" ("00") or
"subgroup". In the present paper, we adopted the classification until the main group.
Specifically, the analysis comprises the CPC classes Y02 and Y04 and their sub-categories. A complete and detailed
overview of the CPC classes included is available at https://www.uspto.gov/web/patents/classification/
cpc/html/cpc-Y10S.html#Y10S. Below we report two tables for Y02 (Tab. Appx.2) and Y04 Tab. Appx.3) classes
respectively with the adopted classification symbols:

CPC class CPC subclass Description

Y02A

TECHNOLOGIES FOR
ADAPTATION TO CLIMATE CHANGE

Y02A 10 at coastal zones; at river basins

Y02A 20
Water conservation ;Efficient water
supply; Efficient water use

Y02A 30
Adapting or protecting infrastructure
or their operation

Y02A 40
Adaptation technologies in agriculture,
forestry, livestock or agroalimentary production

Y02A 50
in human health protection, e.g.
against extreme weather

Y02A 90
Technologies having an indirect contribution
to adaptation to climate change

Y02B

CLIMATE CHANGE MITIGATION TECHNOLOGIES
RELATED TO BUILDINGS, e.g. HOUSING, HOUSE

APPLIANCES OR RELATED END-USER APPLICATIONS

Y02B 10 Integration of renewable energy sources in buildings

Y02B 20
Energy efficient lighting technologies, e.g.
halogen lamps or gas discharge lamps

Y02B 30 Energy efficient heating, ventilation or air conditioning

Y02B 40
Technologies aiming at improving the efficiency of home
appliances, e.g. induction cooking or efficient technologies
for refrigerators, freezers or dish washers

Y02B 50
Energy efficient technologies in elevators, escalators and moving walkways,
e.g. energy saving or recuperation technologies

Y02B 70
Technologies for an efficient end-user side electric
power management and consumption

Y02B 80
Architectural or constructional elements improving the thermal
performance of buildings

Y02B 90
Enabling technologies or technologies with a potential or indirect
contribution to GHG emissions mitigation

Y02C Y02C 20 Capture or disposal of greenhouse gases

Y02D
CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION

AND COMMUNICATION TECHNOLOGIES [ICT]

Y02D 10
Energy efficient computing, e.g. low power processors, power
management or thermal management

Y02D 30
Energy efficient computing, e.g. low power processors, power
management or thermal management

Y02E

REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED
TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION

Y02E 10 Energy generation through renewable energy sources
Y02E 20 Combustion technologies with mitigation potential
Y02E 30 Energy generation of nuclear origin

Y02E 40
Technologies for an efficient electrical power
generation, transmission or distribution

Y02E 50 Technologies for the production of fuel of non-fossil origin

Y02E 60
Enabling technologies; Technologies with a potential
or indirect contribution to GHG emissions mitigation

Y02E 70
Other energy conversion or management systems
reducing GHG emissions

Y02P

CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE
PRODUCTION OR PROCESSING OF GOODS

Y02P 10 Technologies related to metal processing
Y02P 20 Technologies relating to chemical industry
Y02P 30 Technologies relating to oil refining and petrochemical industry
Y02P 40 Technologies relating to the processing of minerals

Y02P 60
Technologies relating to agriculture, livestock or
agroalimentary industries

Y02P 70
Climate change mitigation technologies in the production
process for final industrial or consumer products

Y02P 80
Climate change mitigation technologies for
sector-wide applications

Y02P 90
Enabling technologies with a potential contribution
to greenhouse gas [GHG] emissions mitigation

Y02T

CLIMATE CHANGE MITIGATION TECHNOLOGIES
RELATED TO TRANSPORTATION

Y02T 10 Road transport of goods or passengers

Y02T 30
Transportation of goods or passengers via railways,
e.g. energy recovery or reducing air resistance

Y02T 50 Aeronautics or air transport
Y02T 70 Maritime or waterways transport

Y02T 90
Enabling technologies or technologies with a
potential or indirect contribution to GHG
emissions mitigation

Y02W
CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO

WASTEWATER TREATMENT OR WASTE MANAGEMENT

Y02W 10 Technologies for wastewater treatment
Y02W 30 Technologies for solid waste management

Y02W 90
Enabling technologies or technologies with a potential or
indirect contribution to greenhouse gas [GHG] emissions mitigation

Table Appx.2. Description of Y02 CPC class.
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CPC class CPC subclass Description

Y04S

SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION,
COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING

THE ELECTRICAL POWER GENERATION, TRANSMISSION,
DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS

Y04S 10
Systems supporting electrical power generation, transmission
or distribution

Y04S 20
Management or operation of end-user stationary applications or the
last stages of power distribution; Controlling, monitoring
or operating thereof

Y04S 30
Systems supporting specific end-user applications
in the sector of transportation

Y04S 40

Systems for electrical power generation, transmission,
distribution or end-user application management characterised
by the use of communication or information technologies,
or communication or information technology specific aspects
supporting them

Y04S 50
Market activities related to the operation of systems integrating
technologies related to power network operation or related to
communication or information technologies

Table Appx.3. Description of Y04 CPC classes.
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F Boruta Algorithm
Let X be a feature matrix with n observations and p features, and Y be the target vector. The Boruta algorithm works
as follows:

Algorithm 1 Boruta with RF
1- Initialize the set of important features Z = {}.
2- Create m shadow features for each feature X j, ( j = 1,2, ..., p), where m is a user-specified parameter.
3- Train a Random Forest (RF) model on the original and shadow features. Let the feature importance score for feature
X j be given by the Gini impurity reduction, denoted by I j.
4- For each feature X j, calculate the mean importance score of its shadow features, denoted by S j.
5- If I j > S j, add X j to the set of important features Z.
6- Repeat steps 3-5 until all important features have been identified or all features have been considered.

The equivalent algorithm for XGBoost is as follows:

Algorithm 2 Boruta with XGBoost
1- Initialize the set of important features Z = {}. 2- Create m shadow features for each feature X j, ( j = 1,2, ..., p),
where m is a user-specified parameter.
3- Train an XGBoost model on the original and shadow features. Let the feature importance score for feature X j be
given by the gain, denoted by G j.
4-For each feature X j, calculate the mean gain of its shadow features, denoted by Tj.
5- If G j > Tj, add X j to the set of important features Z.
6- Repeat steps 3-5 until all important features have been identified or all features have been considered.

In both algorithms, the feature importance score is used to rank the features, and the shadow features are used
as a reference to determine if a feature is truly important or if its importance score is due to chance. The algorithm
continues until either all important features have been identified or all features have been considered.
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G Machine Learning algorithms
In this section we apply the machine-learning regularization techniques in order to select the characteristics that make
a green patent science-based (i.e. with a distance below 2 from the frontier). In other words, we explore which are
the features that mostly characterize science-based green patents. The latter exercise provides a statistical validation
to the descriptive results obtained in the previous sections.
Regularization techniques are commonly used in machine learning to prevent overfitting, improve the generalization
performance, and make the models more interpretable by selecting relevant features. In prediction problems, regu-
larization can help in selecting features that are most relevant to the target variable. The two most commonly used
regularization techniques are L1 (Lasso), L2 (Ridge) regularization (Hastie et al., 2009) and ElasticNet which mixes
the two mentioned forms of regularization.
L1 regularization adds a penalty term to the loss function, which is proportional to the absolute value of the coefficients,
and is given by the following equation (Tibshirani, 1996):

λ

p

∑
j=1

|β j|

where β j is the j-th coefficient, p is the number of features, and λ is the regularization parameter. This encourages
the coefficients to be sparse, i.e., only a few features are selected as important.
L2 regularization, on the other hand, adds a penalty term proportional to the square of the coefficients, and is given by
the following equation (Hoerl and Kennard, 1970):

λ

p

∑
j=1

β
2
j

This encourages the coefficients to be small and discourages multicollinearity.
The use of regularization techniques in machine learning has several advantages. Firstly, it helps to prevent overfitting,
which is a common problem in machine learning. Overfitting occurs when the model is too complex and fits the train-
ing data too well, resulting in poor performance on new, unseen data (Bishop and Nasrabadi, 2006). Regularization
techniques help to simplify the model by penalizing complex models, encouraging the model to fit the training data in
a more general way.
Secondly, regularization can also help in feature selection. In many prediction problems, there may be a large number
of features that are not relevant to the target variable. Regularization techniques can automatically identify the most
important features and exclude the others, resulting in a more interpretable model (Hastie et al., 2009). Finally, regu-
larization can also improve the generalization performance of the model. This means that the model is better able to
make accurate predictions on new, unseen data (Boyd & Vandenberghe, 2004).
In the present work we exploit the last two mentioned properties of regularization techniques. Specifically, our prob-
lem is one of classification where the dependent variable, Yi ∈ {0,1}, is dicotomic. Yi represents the fact that a patent i
is science-based or not, i.e. whether the patent is at a distance lower than 2 to the frontier. Following Athey and Imbens
(2019) we performed an horse-ride among various machine-learning technique represented in Tab.Appx.4. We then
confront their performances among each other and with a classical econometric method, namely a Logit Model. The
techniques comprise LASSO, Ridge, ElasticNet, Random Forest (RF) and Extreme Gradient Boosting (XGBoost). To
validate our analysis we included a McNemar test, which provides the presence of statistical differences between two
machine-learning classifiers.
Notice that RF (as well as XGBoost) is not typically considered as a regularization technique in the traditional sense,
but it can have some regularization-like properties. Its use is recommended in classification prediction problems (see,
eg. Athey and Imbens, 2019 among others).
Random forest is an ensemble learning method that creates multiple decision trees and combines their predictions to
obtain a final prediction (Breiman, 2001). By randomly selecting a subset of features at each split, RF can prevent
overfitting to a certain extent, as the trees are less likely to become too complex. This can be seen as a form of implicit
feature selection, as less important features are less likely to be selected at each split.
However, RF does not directly penalize the coefficients or impose any restrictions on the size of the coefficients, as
traditional regularization methods such as L1 and L2 regularization do (see above). Instead, it relies on combining the
predictions of many trees to reduce the variance and increase the stability of the predictions. Thus, while RF does not
directly perform regularization, it can help to prevent overfitting and feature selection.
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Similarly, XGBoost (Extreme Gradient Boosting) is a tree-based ensemble learning method that can be used for both
regression and classification problems. Like RF, XGBoost creates multiple decision trees and combines their predic-
tions to make a final prediction. In XGBoost, regularization can be achieved by adding a penalty term to the loss
function during the training process. This penalty term is proportional to the magnitude of the coefficients, similar to
L1 and L2 regularization. By adjusting the magnitude of the penalty term, the user can control the level of regulariza-
tion in the model. For example, L1 regularization can be achieved in XGBoost by adding an L1 penalty term to the
objective function, while L2 regularization can be achieved by adding an L2 penalty term.
In this way, XGBoost can be used as a regularization technique to prevent overfitting, improve the generalization per-
formance, and select relevant features in prediction problems.
Another important property of RF an XGBoost is that they are immune to sparsity of the data. This is key in our
prediction task as most of the features included (X) comprise dummy variable, and, specifically, yearly dummies and
sectoral dummies 18. The remaining features comprise the percentage of green cited by a patent, the average distance
of the patents cited by the patent to the frontier and other patent-specific characteristics.
In order to prevent that the other methodologies adopted are biased by sparsity –and as a robustness check in the cases
of RF and XGBoost– we performed a grid-search of the training and test sets. The latter consists of a cross-validation
of the training and test sets operated several (1000 in our case) times in parallel. The performance indices of Tab.
Appx.4 are then produced as a median, on the test sets, of the mentioned repetitions. In this way, we ensure that the
features selected in the test set do not consist of all zeros (or ones).
As a further check against sparsity, we performed a dedicated analysis with pre-processed datasets using Principal
Component Analysis19.
We evaluated the described machine-learning classifiers according to the following metrics: the Area Under the Curve
(AUC), the Balanced Accuracy (ACC), Matthews Correlation Coefficient (MCC) and the Precision-Recall AUC (PR-
AUC). The choice of such metrics is motivated by the substantial imbalance of the class labels of the Y variable in
which the zeros represent a 69% of the occurrences.
The F1-Score is the harmonic mean of precision and recall and is a commonly used performance metric in binary
classification tasks. It is defined as:

F1−Score = 2 · (Precision∗Recall)
(Precision+Recall)

where precision is the fraction of true positive predictions made out of all positive predictions and recall is the fraction
of true positive predictions made out of all actual positive instances.
The Precision-Recall AUC (PR-AUC) is another commonly used performance metric, which focuses specifically on
the precision and recall of a model. It is defined as the area under the curve of the precision-recall curve. Unlike
the traditional receiver operating characteristic (ROC) curve, which is used to evaluate the false positive rate and true
positive rate, the PR-AUC takes into account both the precision and recall of a model (Davis and Goadrich, 2006).
The Area Under the ROC Curve (AUC) is calculated as the area under the curve of the receiver operating characteristic
(ROC) curve and is used to evaluate binary classification models. A higher AUC score indicates that the model has a
higher ability to distinguish between positive and negative classes.
The Matthews Correlation Coefficient (MCC) is a measure of the balance between true positive, false positive, true
negative, and false negative predictions and is particularly useful when the distribution of positive and negative classes
is imbalanced. It is defined as follows:

MCC =
(T P∗T N −FP∗FN)√

((T P+FP)(T P+FN)(T N +FP)(T N +FN))

where TP (True Positive), FP (False Positive), TN (True Negative), and FN (False Negative) are the number of
instances in each classification. The MCC ranges from -1 to 1, with a value of 1 indicating perfect performance and a
negative value indicating that the classifier is doing worse than random Powers (2020).
According to Powers (2020) among others in the literature, the F1-Score, PR-AUC, AUC, MCC are among the most
commonly used and fair performance metrics for binary classification tasks, particularly in situations where there is
class imbalance.

18Refer to Appendix E for a description of the sectors included.
19With the PCA we basically confirmed the results reached in terms of importance ranking for the first 10 positions of Tab. 1
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H Assessing the performance of the machine-learning algorithms
The first step is referred to as a "horse-ride" between models, a widely used practice in adopting diverse machine-
learning techniques (see e.g., Rácz et al., 2019 and Bargagli Stoffi, 2020 for a thorough review). Specifically, each
database has been partitioned into a training set and a test set. The training set is employed to determine the optimal
hyperparameters of each model, while the test set is made up of newly observed units that did not participate in the
selection of hyperparameters. The test set is used to perform out-of-bag predictions on the dependent variable Y , and
the models are then compared in terms of performance indices obtained on the test set (see e.g. Athey and Imbens,
2019, for a more detailed explanation). The performance indices are fully described in the Appendix and listed
below. With respect to the models used to evaluate the predictions of the outcome variable, we selected a baseline
model, Logit, and some traditional classifiers that employ regularization and internal cross-validation, specifically,
Cross-Validated (CV) Least Absolute Shrinkage and Selection Operator (LASSO) and CV-Ridge. We also chose
two non-linear classifiers that account for possible interactions among variables, Random Forest (RF), and Gradient
Boosting, which is known as XGBoost, the most popular algorithm for implementing Gradient Boosting.
The idea, again, is to select a subset X̃ ⊂ X that mostly contributed to the prediction of Y (i.e. whether a green patent
is science-based or not). Such a selection is performed either via regularization in the case of CV-LASSO and CV-
Ridge or via feature-importance indices in the cases of RF and XGBoost. Regularization aims to minimize the sum of
squared errors while constraining the sum of absolute values of coefficients to be less than a given constant, L1 norm
for LASSO, and L2 norm for Ridge. LASSO forces some coefficients to be zero, performing feature selection. Ridge
shrinks coefficients towards zero but does not force them to be exactly zero, making it useful for feature selection.

Table Appx.4 provides an evaluation of the performance of machine-learning classifiers based on four indicators:
Area Under the Curve (AUC), Balanced Accuracy (ACC), Matthews Correlation Coefficient (MCC), and Precision-
Recall AUC (PR-AUC). These indicators are explained in detail in the Appendix, and the Logit model serves as the
benchmark for comparison. A McNeamar test is conducted to examine the similarity between pairs of models. RF
exhibits superior performance compared to other models, as reflected in most of the performance indices presented
in Table Appx.4, except for F1-score. These results significantly outperform the benchmark model, CV-LASSO, and
CV-Ridge, which are highlighted in bold in the table. Therefore, the features are selected using RF and XGBoost, and
the Boruta algorithm is utilized to compute the importance metric that contributes the most to the prediction of science-
based features. Boruta compares the importance of each feature with its shadow feature and repeatedly calculates the
feature importance score until all important features have been identified. A shadow feature consists of a random
permutation of the values of the original feature and is used as a reference for determining the feature’s importance.
The Boruta algorithm repeatedly calculates the feature importance score for each feature and its shadow features until
all the important features have been identified. More in detail, the algorithm starts by creating a set of shadow features
for each original feature. Then, it trains a RF (XGBoost) model on the original and shadow features and calculates the
feature importance score for each feature based on the out-of-bag (OOB) error of the model.
The algorithm accepts a feature if its importance score is higher than its shadow features, and it continues until all
important features have been identified. A more formal description of the Boruta features selector can be found
in Algorithms 1 and 2 of the Appendix. Boruta is applied to both RF and XGBoost. The selected covariates are
presented in Tab. Appx.5 for each model.
Fig. Appx.2 displays a bar chart with the number of models that select the variable according to Tab. Appx.5 and the
average importance attributed to the variable in such models.
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Figure Appx.2. Average importance of the selected features among the models which select them (x-axis and
orange bars) and the number of models that select feature i according to Tab. Appx.5 (blue bars).
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I Variable selection by model
The following table presents the variables selected by each model:

Model list
1975-1985 1986-1996 1997-2007 2008-2020 Overall
Number citing Number citing Number citing Number citing Number citing
% of green cited % of green cited % of green cited % of green cited % of green cited
Y02A 10 Y02A 10 Y02A 10 Y02A 10 Y02A 40
Y02A 90 Y02B 10 Y02A 90 Y02A 90 Y02A 90
Y02B 10 Y02B 40 Y02B 10 Y02B 50 Y02B 10
Y02B 20 Y02B 50 Y02B 40 Y02E 10 Y02B 40
Y02B 70 Y02B 90 Y02B 50 Y02E 30 Y02B 90
Y02B 90 Y02D 30 Y02E 10 Y02D 30 Y02E 50
Y02D 30 Y02E 10 Y02E 60 Y02E 60 Y02E 60
Y02E 10 Y02E 50 Y02E 70 Y02E 70 Y02E 70
Y02E 30 Y02E 60 Y02P 30 Y02P 70 Y02P 60
Y02E 70 Y02E 70 Y02P 70 Y02T 90 Y02P 80
Y02P 80 Y02P 80 Y02T 30 Y04S 30 Y02T 30
Y02P 90 Y02T 30 Y02T 90 AU Y02T 90
Y02T 30 Y02T 70 Y04S 30 BE Y04S 10
Y02T 70 Y02T 90 AU CA Y04S 30
Y02W 90 Y04S 10 BE DE Y02W 30
Y04S 10 Y04S 20 CA DK Y02W 90
Y04S 30 Y04S 30 CH ES DE
Y04S 40 Y04S 40 DE FR GB
BE AT DK GB JP
CH BE ES JP KR
DE CA FI KR US
FR CH FR NL University
GB DE GB US Gov.
JP FR IL University .
KR GB IT Gov. .
NL JP JP . .
US KR KR . .
University TW LU . .
Gov. US NL . .
. University NZ .
. . PT . .
. . TW . .
. . US . .
. . University . .

Table Appx.5. The above table collects the variables selected by the best machine-learning model as per the perfor-
mance indices listed in Tab.Appx.4. In the Table we report the CPC indices whose references are listed in Appendix
A.
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Figure Appx.3. Importance of a sub-sample of fea-
tures in the period 1975-1985. Features with impor-
tance greater than 0 are selected.
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Figure Appx.4. Importance of a sub-sample of fea-
tures in the period 1986-1996. Features with impor-
tance greater than 0 are selected.
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Figure Appx.5. Importance of a sub-sample of fea-
tures in the period 1997-2007. Features with impor-
tance greater than 0 are selected.
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Figure Appx.6. Importance of a sub-sample of fea-
tures in the period 2008-2020. Features with impor-
tance greater than 0 are selected.

Figure Appx.7. Features importance according to Random Forest and/or XGBoost.

34



References
Ahmadpoor, Mohammad and Benjamin F Jones (2017). “The dual frontier: Patented inventions and prior scientific

advance”. In: Science 357.6351, pp. 583–587.
Athey, Susan and Guido W Imbens (2019). “Machine learning methods that economists should know about”. In:

Annual Review of Economics 11, pp. 685–725.
Balland, Pierre-Alexandre and Ron Boschma (2022). “Do scientific capabilities in specific domains matter for techno-

logical diversification in European regions?” In: Research Policy 51.10, p. 104594.
Barbieri, Nicolò, Davide Consoli, Lorenzo Napolitano, François Perruchas, Emanuele Pugliese, and Angelica Sbardella

(2022). “Regional technological capabilities and green opportunities in Europe”. In: The Journal of Technology
Transfer, pp. 1–30.

Bargagli Stoffi, Falco Johannes (2020). “Essays on applied machine learning”. In.
Bishop, Christopher M and Nasser M Nasrabadi (2006). Pattern recognition and machine learning. Vol. 4. 4. Springer.
Breiman, Leo (2001). “Random forests”. In: Machine learning 45, pp. 5–32.
Chai, Kuang-Cheng, Yang Yang, Zhiyong Sui, and Ke-Chiun Chang (2020). “Determinants of highly-cited green

patents: The perspective of network characteristics”. In: Plos one 15.10, e0240679.
Corrocher, Nicoletta and Maria Luisa Mancusi (2021). “International collaborations in green energy technologies:

What is the role of distance in environmental policy stringency?” In: Energy Policy 156, p. 112470.
Davis, Jesse and Mark Goadrich (2006). “The relationship between Precision-Recall and ROC curves”. In: Proceed-

ings of the 23rd international conference on Machine learning, pp. 233–240.
Hastie, Trevor, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman (2009). The elements of statistical

learning: data mining, inference, and prediction. Vol. 2. Springer.
Heal, Geoffrey (2007). “Environmental accounting for ecosystems”. In: Ecological economics 61.4, pp. 693–694.
Higham, Kyle, Martina Contisciani, and Caterina De Bacco (2022). “Multilayer patent citation networks: A compre-

hensive analytical framework for studying explicit technological relationships”. In: Technological Forecasting and
Social Change 179, p. 121628.

Hoerl, Arthur E and Robert W Kennard (1970). “Ridge regression: applications to nonorthogonal problems”. In:
Technometrics 12.1, pp. 69–82.

Jaffe, Adam B, Richard G Newell, and Robert N Stavins (2005). “A tale of two market failures: Technology and
environmental policy”. In: Ecological economics 54.2-3, pp. 164–174.

Kemp, René, Anthony Arundel, Christian Rammer, Michal Miedzinski, Carlos Tapia, Nicolò Barbieri, Serdar Türkeli,
Andrea M Bassi, Massimiliano Mazzanti, Donald Chapman, et al. (2019). “Measuring eco-innovation for a Green
economy”. In: Wirtsch Blätter, Special Issue on Nachhaltigkeit/Sustainability 66.4, pp. 391–404.

Kivimaa, Paula and Florian Kern (2016). “Creative destruction or mere niche support? Innovation policy mixes for
sustainability transitions”. In: Research policy 45.1, pp. 205–217.

Li, Yaya, Yuru Zhang, Chien-Chiang Lee, and Jing Li (2021). “Structural characteristics and determinants of an inter-
national green technological collaboration network”. In: Journal of Cleaner Production 324, p. 129258.

Li, Yuanhao and Klaas van’t Veld (2015). “Green, greener, greenest: Eco-label gradation and competition”. In: Journal
of environmental economics and management 72, pp. 164–176.

Marra, Alessandro, Paola Antonelli, and Cesare Pozzi (2017). “Emerging green-tech specializations and clusters–A
network analysis on technological innovation at the metropolitan level”. In: Renewable and Sustainable Energy
Reviews 67, pp. 1037–1046.

Marx, Matt and Aaron Fuegi (2020). “Reliance on science: Worldwide front-page patent citations to scientific articles”.
In: Strategic Management Journal 41.9, pp. 1572–1594.

Neufeldt, Henry, Lars Christiansen, and Thomas William Dale (2021). “Adaptation Gap Report 2020”. In: United
Nations Environment Programme.

Nomaler, Önder, Bart Verspagen, et al. (2021). Patent Landscaping Using" green" Technological Trajectories. Maas-
tricht Economic and Social Research Institute on Innovation and . . .

Pollacci, Laura (2022). “EMAKG: An Enhanced Version Of The Microsoft Academic Knowledge Graph”. In: arXiv
preprint arXiv:2203.09159.

Popp, David (2019). “Environmental policy and innovation: a decade of research”. In.
Powers, David MW (2020). “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and

correlation”. In: arXiv preprint arXiv:2010.16061.

35



Rácz, Anita, Dávid Bajusz, and Károly Héberger (2019). “Multi-level comparison of machine learning classifiers and
their performance metrics”. In: Molecules 24.15, p. 2811.

Skinner, A Nicole and Kristen Valentine (2023). “Green Patenting and Voluntary Innovation Disclosure”. In: Available
at SSRN 4321932.

Söderholm, Patrik (2020). “The green economy transition: the challenges of technological change for sustainability”.
In: Sustainable Earth 3.1, pp. 1–11.

Tibshirani, Robert (1996). “Regression shrinkage and selection via the lasso”. In: Journal of the Royal Statistical
Society: Series B (Methodological) 58.1, pp. 267–288.

Tukker, Arnold, Tanya Bulavskaya, Stefan Giljum, Arjan de Koning, Stephan Lutter, Moana Simas, Konstantin Stadler,
and Richard Wood (2016). “Environmental and resource footprints in a global context: Europe’s structural deficit
in resource endowments”. In: Global Environmental Change 40, pp. 171–181.

36


	Introduction
	The link between science and innovation in green technologies: a literature review
	Data
	Methodology
	Distance metric

	Results
	Exploring the determinants of science-based green patents
	Assessing the determinants of science-based green patents

	Discussion and Conclusions
	Auto-citation patterns
	The BFS algorithm
	Average distance by CPC class
	(Un-)Connected components by inventor country
	CPC sectors legend
	Boruta Algorithm
	Machine Learning algorithms
	Assessing the performance of the machine-learning algorithms
	Variable selection by model

