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Abstract

Over the years, our economic and innovation systems have harnessed chemistry to exploit its poten-

tial for private welfare and profit, resulting in groundbreaking advancements in synthetic chemistry

after World War II. However, the diffusion of these technologies has revealed significant unintended

consequences, leading to detrimental impacts on human health and ecosystems. The hazards of a

class of pesticides, known as persistent organic pollutants (POPs), were brought to light as early

as 1962. Starting the same year, several countries have legislated with the aim of phasing out the

production, use, import, and export of POPs. This regulatory push was expected to reduce firms’

innovative efforts in this area. However, path dependency and existing investments in production

facilities may have hindered this process, leading to cumulative innovation and attempts to invent

around the bans. This paper seeks to investigate the impact of POPs regulation on firms’ innova-

tion trajectories, determining to what extent the ban redirect the research efforts toward less toxic

domains. By combining several unique datasets, we apply a firm-level Difference-in-differences with

multiple time periods analysis, leveraging the staggered timing of the bans. Our findings reveal that

country-level initiatives aimed at banning POPs were effective in reducing patenting activities in the

domain of POPs only in chemical fields, while the number of POPs-related patents filed outside the

chemical fields has increased despite the ban.
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1 Introduction

Planetary boundaries represent a framework for understanding and quantifying the environmental limits

within which humanity can safely operate to maintain a stable and sustainable planet (Rockström et al.,

2009). One core pillar of the planetary boundaries is chemical pollution, which considers the release of

synthetic chemical pollutants into the environment. A key concern is represented by the introduction of

harmful chemicals that can have widespread and long-lasting effects on ecosystems and human health,

also called persistent organic pollutants (POPs). POPs are “chemical substances that persist in the

environment, bio-accumulate through the food chain, and pose a risk of causing adverse effects to human

health and the environment” (UNEP, 2017, p. 6). The reason why there is so much concern is that they

are highly hazardous: they cause cancer, damages to the immune and nervous systems, and are highly

poisonous to human beings, animal species and the environment at large (AMAP, 2009). Evidence of

the dangers of a class of a first group of hazardous POPs, also known as the “Dirty Dozen”, started to

be available already in 1962 (Carson, 2002)1, yet it took some forty years for governments to agree on a

global ban. DDT is probably the most infamous POP; while it has contributed to eradicating malaria

and promoting economic development (Özkara et al., 2016), its noxious effects have been known quite

early.

POPs have been globally banned under the Stockholm Convention, promoted by the United Nations,

which has led to the ban of a first group of 12 compounds in 2001 and the second ban of an additional

16 compounds in 2017.2 Country-level initiatives have anticipated this global effort started in 1960 and

aimed at phasing out the production of POPs. While not homogeneous across countries, such country-

level regulations have banned either the use, import or export of all or some POPs. As these bans aim to

regulate POPs, we expect that firms active in this area would lower their innovative effort around these

toxic compounds. However, path dependency and investments in production facilities might hamper this

process and trigger a process of cumulative innovation and “inventing around” to circumvent the ban.

This paper aims to identify the impact of the regulation of POPs on firms’ innovation trajectory and

assess to what extent the ban has moved firms’ research efforts towards new domains that are less toxic.

We rely on two unique and novel datasets to tackle this research agenda. The first dataset reconstructs

the inventive activities of chemical firms. We exploit the chemical database CAS SciFinderN to retrieve

all the patents containing at least one POPs chemical compound, identified through their international

chemical identifiers (i.e., the CAS Registry Number). We then use the EPO-PATSTAT database and

1For more recent evidence, see: Bartrons et al. (2016), Jepson and Law (2016), Ma et al. (2011).
2The first 12 banned POPs, also known as “Dirty Dozen”, are aldrin, chlordane, dieldrin, endrin, hep-

tachlor, hexachlorobenzene (HCB), mirex, toxaphene, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane
(DDT), dioxin, and polychlorinated dibenzofurans. The subsequent 16 banned compounds are chlordecone, α -
hexachlorocyclohexane (α -HCH) and β-hexachlorocyclohexane (β-HCH), hexabromodiphenyl ether (hexaBDE) and hep-
tabromodiphenyl ether (heptaBDE), lindane, pentachlorobenzene (PeCB), tetrabromodiphenyl ether (tetra BDE) and
pentabromodiphenyl ether (pentaBDE), perfluorooctanesulfonic acid (PFOS), endosulfans, and hexabromocyclododecane
(HBCD)
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ORBIS-IP to obtain standard patent-related information for each identified patent and applicant. The

second hand-collected dataset includes information on country-specific regulations on POPs since 1960.

This information includes the type of restriction imposed on each POP (e.g. ban on the use, import,

export and production and related exemptions when applied) along with the year of implementation.

Combining these two datasets we apply a Difference-in-differences with multiple time periods anal-

ysis (Callaway and Sant’Anna, 2021), exploiting the staggered timing of the bans and considering that

the same firm can protect inventions in different countries. This research design allows us to precisely

identify the impact of banning POPs on firms’ innovation activity and possibly draw causal relations.

This methodology is particularly suited to our study because the timing of the bans is staggered. Our

identification strategy relies on the firms’ widespread practice to fill applications of worthy inventions in

multiple patent offices worldwide to obtain patent protection in multiple countries (de Rassenfosse et al.,

2021). This implies that we can observe the inventive strategies of a given firm in countries with different

regulatory settings.

We use several outcome variables computed at the firm-level to proxy firms’ inventive strategies. First,

we rely on the number of POPs patent applications filed by the firm in each country-year. Second, we

compute the similarity of the firm’s inventions over time based on the indicator of chemical compounds’

novelty proposed by Krieger et al. (2022). Third, in line with Biggi et al. (2022), we measure the

degree of toxicity of patents considering all the chemical structures therein. For computational reasons,

comprehensive regression results are reported only using the first dependent variable at this stage.

Our preliminary findings suggest that banning POPs has been effective in reducing patenting activities

in the domain of POPs only in chemical fields. In contrast, POPs-related patents filed outside the chemical

fields have increased over time despite the ban.

Moreover, to map the evolution of technological trajectories in the domain of POPs, chemical data

allows us to apply a recently developed measure of the similarity of chemical inventions (Krieger et al.,

2022), going beyond established indicators used in the innovation literature. Second, we provide a policy

evaluation of the numerous countries’ initiatives worldwide aimed at banning the use of POPs. To

the best of our knowledge, no existing studies provide an empirical assessment of the effectiveness of

these policies. Understanding the economic impact of chemical regulations and how they influence firms’

innovation trajectories is important for public policy, R&D management and firm strategy.

2 Background

2.1 Countries’ legislative initiatives that led to the Stockholm Convention

POPs are a class of pollutants characterized by their persistence in the environment and bioaccumulation

through the food chain (UNEP, 2017). Such pollutants are highly hazardous: they cause cancer, damages
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the immune and nervous systems, and are highly poisonous to human beings, animal species and the en-

vironment at large (AMAP, 2009). From the economic perspective, they are a global negative externality

as they can be detected in places where they are not directly used. For example, a recently growing

concern expressed by bioscientists concerns the re-volatilization POPs as a result of the melting of polar

ice (Nizzetto et al., 2010; Rigét et al., 2019). This group of pollutants consists mainly of pesticides (e.g.

DDT), industrial chemicals and unintentional by-products of industrial processes. Because of the increas-

ing evidence of the danger of these chemicals and following the recommendation of the Intergovernmental

Forum on Chemical Safety (IFCS) and the International Programme on Chemical Safety (IPCS), a first

group of a hazardous POPs, also known as the “Dirty Dozen”(namely: Aldrin, Chlordane, DDT, Endrin,

Heptachlor, Hexachlorobenzene, Mirex, Pentachlorobenzene, Toxaphene, and Polychlorinated Biphenyls;

Polychlorinated dibenzo-p- dioxins), were banned or their use was severely restricted starting from 2001

by an international treaty – the Stockholm Convention. The treaty was signed between 2001 and 2002

by 153 countries worldwide, and it was progressively ratified in the following years (most ratifications

occurred between 2001 and 2007). This global ban has mitigated concerns about these hazardous chemi-

cals, at least up until very recently, when it became clear that they would re-volatilize in the atmosphere

as a consequence of melting Antarctic ice (Nizzetto et al., 2010; Ma et al., 2011; Rigét et al., 2019). In

2017, the Stockholm Convention added 16 new POPs to the treaty and currently has other chemical

compounds under review, including per-polyfluoroalkyl substances (PFAS). More recently, Cousins et al.

(2022) shows that environmental contamination caused by PFAS is pushing chemical pollution outside

the limits of planetary boundaries that define a safe and operating space for humanity (Rockström et al.,

2009).

While it took some forty years for governments to agree on a global ban, evidence of the dangers of

a class of pesticides started to be available in 1962 (Carson, 2002). In the same year, well before the

global initiative of the Stockholm Convention, several countries have legislated, intending to phase out

the production of POPs. For instance, the US has implemented several measures that mirror the treaty’s

regulations such as the Toxic Substances Control Act (TSCA), enacted in the 1970s and amended in

2016 that regulate the manufacture, distribution, use, and disposal of chemicals, including some POPs or

the Clean Water Act (CWA), first enacted in 1972 that regulates discharges of toxic pollutants including

POPs into US waters.

Pre-Stockholm Convention initiatives are rather heterogeneous across countries and differ across two

main dimensions. First, while most countries regulate all POPs simultaneously, some bans focus on one

or a group of POPs. Second, not all bans are equal in phasing out POPs, as they may affect these

compounds’ use, production, import or export differently. For instance, in the early 1970s, the US

banned the agricultural use of DDT. The ban was primarily driven by environmental concerns about

DDT’s persistence and its impact on wildlife, particularly birds like the Bald Eagle and the Peregrine
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Falcon, as well as the accumulation of DDT residues in the food chain. On the other hand, Australia

through the National Pollution Inventory (NPI) of 1970s focused from the beginning on regulating all

POPs.

However, while most research has addressed the legacy of POPs, very little is known about whether

these country-level initiatives stemming in the ’60 affected firms’ innovation activity. For instance, to

what extent do such regulatory initiatives affect a firm’s innovative trajectory around POPs? Are firms

responding to the ban moving towards less harmful innovation or just inventing around the ban? This

paper aims to answer these research questions.

2.2 Firms’ responses to banned technologies: Competing working hypotheses

While we expect products that have been banned to disappear from the market progressively, it is not

clear what happens to the knowledge that underlies such products. Earlier research has shown that

companies know more than they make (Brusoni et al., 2001), which means that companies tend to retain

or produce knowledge in excess to cope with unpredictable changes in their competitive environment. In

the context of toxic and banned technologies, we know virtually nothing about whether and why, in the

face of a ban, companies and other organizations generate knowledge conducive to developing potentially

hazardous new products. Unlike countries that invest in hazardous technologies – such as chemical or

nuclear weapons – to deter more powerful adversaries from using them for destructive purposes, companies

and other organizations are not likely moved by deterrence. However, knowledge about their patenting

strategies in the aftermath of a ban is crucial to inform regulators about potential future hazards and

deepen our understanding of corporate inventive and innovative processes in the context of sustainability

transitions.

We develop two alternative general hypotheses about the patenting behaviour of companies and other

organizations after the emergence of a ban. Both our hypotheses assume that companies and other

organizations researching the banned technologies are not malevolent entities and will, therefore, have

agreed on the threats posed by their past discoveries and will seek to find ways to address them in the

future, to stop or minimize the noxious impacts on humans and the environment. The direction of their

R&D efforts after the ban is also assumed to result from calculated strategic decisions in the face of a

changing regulatory environment. Such decisions are expected to be taken to both address social and

environmental threats and to hedge against future losses in the case of more stringent regulatory mea-

sures. In that context, our first hypothesis suggests that, after a ban, companies and other inventing

entities will take new ”explorative” innovation paths (March, 1991) and, therefore, will make the knowl-

edge underpinning the banned technologies less important. They will potentially explore radically new

technological trajectories (Dosi, 1982), which we envisage will not build on the established and ”toxic”

banned technological knowledge, which will instead decline in relevance. The general rationale for this is
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that the banned technological knowledge becomes a dangerous terrain for new investments, especially if

the new technological developments draw – even if partially – on the banned technological knowledge that

can be subject to future bans within the same or a different treaty. Hence, in a scenario of heightened

uncertainty and risk following a ban, we expect the following hypothesis to be supported:

Hypothesis 1 (a): After banning a given technology, the patents underpinning the banned technol-

ogy will decline.

However, an alternative hypothesis is also possible. Changing technological trajectories and aban-

doning a beaten track can also be risky for inventing organizations, which may instead be willing to

continue building on their existing knowledge basis rather than looking for radically new solutions. Path

dependency and investments in production facilities might hamper this process and trigger a process of

cumulative innovation and ”inventing around” to circumvent the ban. Inventing organizations will con-

tinue to invest incrementally based on their existing knowledge base following an ”exploitative” invention

path (March, 1991). Unlike Hypothesis 1 (a), we would not observe a decline in patents connected to

the banned technology. However, we expect new patents to be dissimilar and have a less toxic potential

on human beings and the environment than the one they had before the ban. Hence, we formulate the

following alternative hypothesis:

Hypothesis 1 (b): After banning a given technology, the patents underpinning the banned technol-

ogy will not decline, while their similarity or degree of toxicity will.

3 Data and descriptive evidence

3.1 Building the chemical dataset

To test our hypothesis, we rely on various data sources (see Table A1 for an overview). First, we use

the chemical database maintained by the Chemical Abstract Society (CAS) SciFinderN to retrieve all

patent documents containing at least one chemical compound associated with a POP. The SciFinderN

database has the unique feature of providing comprehensive patent-compounds associations. Therefore,

we can precisely retrieve the POP-related patents using their compound international identifier (i.e. the

CAS Registry Number). Furthermore, this dataset includes information about each compound’s function

in the invention (e.g., part of a mixture, catalyst, excipient, reagent). This information allows us to

select only those patents building upon POPs - among other chemical compounds - as components of the

products or processes sought of the invention and to exclude inventions aimed at removing or mitigating

the harmful effect of POPs. The search conducted in SciFinderN resulted in 3,555 worldwide POPs patent

families filed between 1960 and 2016.3 We then match the patent identities retrieved from SciFinderN

with the EPO-PATSTAT database to obtain standard patent-related information such as the filing date,

3Note that the SciFinderN provides all the relevant chemical data at the patent family level. However, each family is
identified with only one family member, generally the first one applied.
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applicant name and IPC classes. More importantly, for our identification strategy, we use the EPO-

PATSTAT database to reconstruct the DOCDB family and identify all the legislations in which each

POP-related invention is protected. We use the IPC classes and the classification by Van Looy et al.

(2015) to distinguish patents filed in the chemical and non-chemical technological fields. Interestingly, the

majority of POP patents are applied outside the chemical domain. Indeed, only 907 patents have the main

IPC class that refers to chemical technological fields. This finding indicates that such harmful compounds

are used for producing high-quality parts for manufacturing. For example, the metal plating process uses

several additives in producing machinery and vehicles. One is a POP called perfuorooctane-sulfonic acid

or –sulfonate (PFOS).4

3.2 Data on firms and countries’ legislation

We devote particular effort to harmonizing and cleaning applicants’ names to perform our firm-level

analysis. Starting from the harmonized names provided by Magerman et al. (2006)5, we manually cleaned

more than 85% of the applicants’ names. At this stage, we aggregate subsidiaries to single names to avoid

duplicating the same entity. Our final dataset contains 898 distinct patent applicants, among which 695

are private firms, and the remaining 203 are research institutions, universities or public authorities (see

Table A1). We complement applicants’ information using ORBIS-IP, from which we retrieve some firm-

level information.

Finally, for implementing the staggered Difference-in-Difference model, we compile a dataset including

legislative information for each POP for 146 countries from 1960 onwards. Among these, we restrict our

current analysis to 85 countries for which we have i) information about national patenting activity and

ii) at least one POP patent filed in the period of analysis. Table 1 indicates the country included in the

analysis and the year of the ban before the global ban of the Stockholm convention. The first country-level

initiative goes back to 1962, when the Netherlands started legislating about POPs, followed by Sweden,

Norway and Hungary in 1966, Estonia in 1967 and Argentina in 1968.

Figure 1 display the data reported in table 1 to give a better glimpse of the time heterogeneity of

ban adoption. Such heterogeneity motivates the choice to implement a staggered Difference-in-Difference

model.

3.3 Descriptive evidence

In Table 2, we display the top 20 applicants by the number of POPs patents filed throughout the period

of analysis.

Bayer stands out as the company with the highest number of patents in the POPs domain, with 729

patents filed worldwide in the analysis period. In terms of patent shares in the overall period, Bayer,

4See https://www.unido.org.
5The EPO-PATSTAT database provides the standardized names in table TLS206 person.
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Table 1: List of countries and year of ban

Country Year of ban
NL 1962
NO, SE, HU 1966
EE 1967
AR 1968
BG, KR, DZ 1969
US, DK, FI, MD, TJ 1970
JP, IN, HR, TR, RS 1971
GB, DE 1972
BE, ID, GT 1974
LT 1975
CA, CY 1976
AU, CZ 1977
UY 1978
JO, TN 1980
TH, LU, IE 1981
ZA, CL, SI 1982
PH 1983
MA 1984
SK, MW, EC, PT, SG, MC, CO, ZM 1985
CH, ES, KE 1986
NZ 1987
AT, RO, MX, CR 1988
CU 1989
FR, HN, PE 1991
VN 1992
LV 1993
IS 1996
PA 1997
PL 2001
CN, BR, HK, DO, EG 2004
GR 2006
NI, ZW, UA 2007
RU, ME 2011
MT 2017
IT 2022
IL, MY, GE, SV, BA, TW, SM Never

The year represents the first country’s initiative in the domain of POPs. Datasource: hand-collected dataset.

Table 2: Top 20 applicants by number of POPs patents

Applicant
nr of POPs
patents

POPs patent
share

Country

Bayer 729 0.179 Germany
Basf 543 0.134 Germany
Syngenta 369 0.091 Switzerland
DuPont 153 0.038 United States
Dow Chemical 52 0.013 United States
FMC 49 0.012 United States
Zeneca 37 0.009 United Kingdom
MIT 33 0.008 United States
Ugine Kuhlmann 33 0.008 France
Imperial Chem 32 0.008 United Kingdom
Hoechst 30 0.007 Germany
Mitsubishi 26 0.006 Japan
Sanofi (Hungary) 22 0.005 Hungary
Aventis 21 0.005 France
Atochem 21 0.005 France
Spolchemie 21 0.005 Czech Republic
Albemarle 20 0.005 United States
Hooker Chemical 17 0.004 United States
Ishihara Sangyo Kaisha 17 0.004 Japan
Brigham&Women’s (Harvard) 16 0.004 United States
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Figure 1: Countries’ initiatives against POPs over time
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Our own elaboration on patents filed in 85 countries between 1962 and 2022. The y-axis is the cumulative number of countries in

which either the production, import, export and use of POPs has been banned. The x-xis reports the year of the first country’s

initiative in the domain of POPs. The vertical line stands for the year in which the work of the Stockholm Convention starts

(2001). Datasource: hand-collected dataset.

Basf and Syngenta hold 40% of the POPs patents. The list of top 20 applicants also includes universities

and research centres such as the MIT.

In Figure 2, we plot the trend over time of the number of POPs patents filed worldwide between

1962 and 2016, together with the cumulative number of existing bans in the 85 countries analyzed.

Surprisingly, despite the constant increase of countries’ initiatives to ban POPs, the number of POP

patents has remained stable until 2000 and has enormously increased since 2004. This trend is confirmed

once looking at each country separately, as shown in Figure A1. While the surge in the number of POPs-

related patents started in 2004 in most countries, a considerable increase in the number of applications

of POPs-related inventions can be observed in the early 2000 in Japan.

4 Empirical strategy

4.1 Outcome variables: number of patents, similarity and toxicity

We use three different outcome variables to identify the impact of banning POPs on firms’ innovation

activity. First, we compute the number of patent applications, including a POP compound filed by the

firm in each country and year. This variable captures the extensive margin of firms’ innovation response

to country-level legislation aimed at banning POPs.
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Figure 2: Evolution of POPs-related patent applications and number of existing countries’ regulation
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Our own elaboration on patents filed in 85 countries between 1962 and 2016. The left y-axis is the cumulative number of

countries in which either the production, import, export and use of POPs has been banned. The right y-axis is the number of

POPs patents filed worldwide in each year.

Second, we compute an ex-ante patent similarity measure by re-adapting the approach proposed by

Krieger et al. (2022) to the chemical context.6 This measure exploits the ”Similarity Property Principle”,

which states that structurally similar compounds tend to have similar functional properties (Johnson

et al., 1990). In this framework, the Tanimoto coefficient is a widely-used standard similarity measure in

computational chemistry and drug discovery (Bajusz et al., 2015). The Tanimoto coefficient determines

whether two or more compounds are closely related in terms of their structural characteristics, by consid-

ering a chemical compound as a set of structural features (i.e., the substructures or chemical fragments).

Appendix B reports an example of how this measure works based on two compounds.

Each patent includes numerous compounds7 and to calculate their similarity, they can be compared

using a clustering technique. For this step, we leverage a clustering approach called binning cluster-

ing, using the ChemMine software8. Binning clustering assigns each compound to a group of similar

compounds based on a similarity cut-off, typically close to 0.4 (Muthas and Boyer, 2013). Using this

clustering technique, we assess the similarity of pairs of patents based on the clustered compounds. If

two patents have few (many) clustered compounds in common, they are considered dissimilar (similar)

in the chemical space based on their chemical characteristics. In other words, the more the similarity

between two patents, the more the overlap of their clustered compounds. To calculate this overlap, we

rely on a standard Jaccard index (Nikolova and Jaworska, 2003):

6Krieger et al. (2022) use a very similar approach to assess the degree of novelty of new molecules submitted to trials
by pharmaceutical firms.

7Each patent included in our set reports on average 122.42 compounds (Std. dev. 181.57).
8See https://chemminetools.ucr.edu/.
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JA,B ≡ |A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(1)

This measure captures the fraction of chemical features that are shared by the two patents and takes

values between 0 and 1, with 0 implying no chemical features in common. Figure 3 shows a simplified

example of how this measure works by comparing pairs of patents using the Jaccard index. In this case,

the two patents have a similarity value of 0.55, resulting from 5 compounds clustered together.

Figure 3: Example of the similarity measure between two patents

Jaccard=5/(7+7-5)=5/9=0.55

Following the approach by Krieger et al. (2022), we then compute the within firm similarity for each

year. For each firm i at time t, we compute the Similarityi,t as patents filed at time t maximum pairwise

similarity to patents filed in the previous three available years.9

Figure 4: Distribution of similarity
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Distribution of within firms similarity in patents filed in the domain of POPs.

Figure 4 shows the within-firm similarity measure distribution. The graph shows that the distribution

is bimodal, with most patents having maximum similarity close to 0 or close to 1. Recalling that a low

similarity score implies high novelty, this evidence suggests that most patents are either very novel or not

9See Appendix C for an example of how we compute the firm’s maximum similarity.
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novel. Krieger et al. (2022), the only previous paper using a very similar metric, also finds this bimodal

distribution of patent novelty in the pharmaceutical industry.

Figure 5: Patent similarity between small and large firms

0

.2

.4

.6

.8

1
av

er
ag

e 
m

ax
 s

im
ila

rit
y

small large
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the firm’s patent portfolio in each country. Large firms have a patent portfolio above the 95th percentile of the distribution.

Small firms belong to the residual category.

Figure 5 displays how the average degree of novelty differs between large and small firms regarding

their patent portfolio. We define large firms as those with a patent portfolio above the 95th percentile of

the portfolio’s distribution. Interestingly, larger firms file patents with a lower degree of novelty compared

to small firms.

Finally, future effort will be dedicated to build a third outcome variable capturing the degree of

toxicity of the compounds included in the patented invention (Biggi et al., 2022). Given the presence

of patents with high level of compound structural similarity, we expect that the new patents are still

hazardous for human health and environment even if not strictly banned. Using together the similarity

and toxicity measure we aim testing whether the bans has moved firms’ research efforts towards the

development of new chemical structure possibly less toxic.

4.2 Difference-in-differences with multiple time periods

Our empirical strategy follows the estimation procedure of Callaway and Sant’Anna (2021). This ap-

proach accounts for variation in treatment timing and heterogeneous treatment effects, in the presence of

which the standard two-way fixed effects difference-in-difference model does not guarantee to estimate an

interpretable causal parameter (Borusyak and Jaravel, 2018; De Chaisemartin and d’Haultfoeuille, 2020;

Goodman-Bacon, 2021). In our approach, the control group is composed of the not-yet treated countries,

excluding the never treated (i.e. those few countries that have never experienced a ban).10

10Our analysis is performed using the csdid package in STATA (Rios-Avila et al., 2023).
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At this stage, we limit the period of analysis between 1960 and 2000 to avoid possible confounding

factors stemming from the Stockholm Convention and the potential influences this global ban may have

had on firms’ innovation activity.

As the primary dependent variable, we use the logarithm of the number of POPs-related patents filed

by the firm i in country k in year t. As control variables, we include the number of jurisdictions in which

the firm is patenting and a dummy equal to one if the applicant is a university or research centre.

5 Results

Table 3 displays the results of the regression analysis to test our first hypothesis. In the first column, we

use the count of POPs-related patents filed by each firm i in the country k in log terms as an outcome

variable. In the second and third columns, we distinguish between chemical and non-chemical POPs-

related patents using the classification developed by Van Looy et al. (2015).11 In all specifications, we

include the number of jurisdictions in which the firm is patenting as control variables and a dummy if

the applicant is a university or a research centre. Moreover, firm- and year- fixed effects are included.

We cluster the standard error at the firm-country level.

Table 3: Firm-level staggered diff-diff results

all
POPs

POPs applied
in chemical

POPs applied
outside
chemical

ATT -0.00894 -0.0254** 0.0128*
(0.010) (0.011) (0.007)

Observations 15,968 15,968 15,968
Year FE ✓ ✓ ✓
Firm-country FE ✓ ✓ ✓
Additional controls ✓ ✓ ✓

Period of analysis: 1962-2000.
Standard errors in parentheses, clustered by firm-country.
Legend: *** p<0.01, ** p<0.05, * p<0.1

Our findings suggest that country-level initiatives aimed at banning POPs do not affect firms’ inno-

vation activity related to POPs. When using the total number of POPs-related patents as the outcome

variable, the Average Treatment Effect of the Treated (ATT) is not significant. However, by distinguish-

ing POPs applied to chemical or non-chemical fields, we get an interesting insight: bans have a negative

impact once POPs are applied to chemical technologies, while they have a positive (but barely significant)

effect on POPs patents applied outside chemical fields. A graphical illustration of our results in time is

shown in Figure 6. This result suggests that firms are possibly “repurposing” POP-related inventions

into technological domains not directly associated with their primary chemical use. Overall, these bans

11This classification is based on the IPC class of each patent, and it is retrieved from the table TLS229 of the EPO-
PATSTAT database.
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have mixed effects on POP-related innovation activities, only partially confirming our first hypothesis.

Investigating the effect on similarity and toxicity should help disentangle which channels are affected

mainly by the regulatory change.

Figure 6: Effect of the bans on POPs-related patents applied in chemical and non-chemical fields
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These results are robust if we exclude universities and research centers from the sample. Moreover,

they are also robust if we run the regression at the country-level, as shown in Table A3.

Figure 7: Average max similarity across countries in time
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The max similarity measure is computed at the patent-level.

Moving to our second hypothesis, we do not yet have formal testing using regression analysis, so we

provide some preliminary descriptive results. Figure 7 displays the average maximum similarity across

countries over time. In this case, the similarity measure is calculated at the patent level, computing

the maximum similarity between each patent filed in a year and all patents previously filed in the same

country. Following the second hypothesis, we expect that bans decrease the similarity to POP patents,

indicating a different innovative trajectory over time. However, figure 7 does not display such a decline.

Instead, on average, patents seem to become more similar between 1960 and 1980 and from 2000. This

descriptive evidence suggests that firms might not change their innovative trajectory following the bans

but continue on the same trajectory, patenting compounds similar to POPs but possibly not banned.

The issue with very similar compounds is that structural similarity entails similar characteristics, such
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as toxicity and potential harm to human health and the environment. Despite preliminary, this evidence

goes against our second hypothesis. Future efforts will be dedicated to testing the second hypothesis

using the regression approach discussed in Section 4.2.

6 Conclusion

Evidence of the dangers of POPs was already available in the ’60. Since 1962, several countries have

started introducing regulations intending to phase out the production, use, import, and export of POPs.

While country-specific bans were designed to forbid future production and use of these chemicals, they

did not directly regulate the R&D processes underpinning the banned compounds, perhaps based on the

presumption that these would have been phased out too. Our study reveals that country-level initiatives

aimed at banning POPs effectively reduced patenting activities in the domain of POPs only in chemical

fields. In contrast, the number of POP applications filed outside the chemical fields has increased after

the ban. Investigating the effect on similarity and toxicity should help disentangle which channels are

affected mainly by the regulatory change. Preliminary evidence suggests that similarity does not decrease

over time, highlighting how firms might introduce new compounds that are not banned but very similar

to POP and, therefore, very toxic.
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A Tables and figures

Table A1: Datasources

Datasource Type of data

CAS SciFinderN
chemical structure and its functions in the product/process sought by
the patented invention

EPO - PATSTAT patent-related information (e.g. date of filing, applicant, IPC class).

Own dataset hand-collected dataset of bans across countries

ORBIS - IP Firm-level information (e.g. financial data)

Table A2: Dataset composition

Period of analysis 1960-2016

Nr of:
regulating countries 146

for which:
patent data are available 85

patents with POPs compounds 3,555
among which:
filed in chemical IPC classes 1,844
filed in non-chemical IPC classes 1,381
info not available 330

among which:
filed in agro fields 1,852
filed in non-agro fields 1,703

patent applicants 898
among which:
private firms 695
universities/institutions 203

Notes: Agro-fields are defined by the section title available in SciFinderN.
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Figure A1: Evolution of POPs-related patent applications by country
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Our own elaboration on the top patent offices worldwide in terms of number of POPs related patent applications filed between

1962 and 2016. The displayed 10 patent offices cover the 50% of the patents in our dataset.

Table A3: Country-level staggered diff-diff results

all
POPs

POPs applied
in chemical

POPs applied
outside
chemical

ATT -0.112 -0.186* 0.0307
(0.098) (0.099) (0.082)

Observations 1,482 1,482 1,482
Year FE ✓ ✓ ✓
Country FE ✓ ✓ ✓

Period of analysis: 1962-2000.
Standard errors in parentheses, clustered by country.
Legend: *** p<0.01, ** p<0.05, * p<0.1
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B Computing the Tanimoto coefficient

Figure B1 displays two similar alcohol compounds, ethanol (Compound A) and methanol (Compound B).

Using the Tanimoto coefficient formula (Equation 1), we can calculate their structural similarity based

on the presence of common chemical features (fragments). In this case, we have two common features at

the intersection (CH3 and OH) and three unique features at the union (CH3, CH2, OH), resulting in a

Tanimoto coefficient of approximately 0.67. This measure suggests that ethanol and methanol share two

of three selected structural features, making them similar.

Figure B1: Example of two structurally similar compounds

Compound A: Ethanol

Chemical Structure: C2H5OH

Simplified Representation: CH3-CH2-OH

Compound B: Methanol

Chemical Structure: CH3OH

Simplified Representation: CH3-OH
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C Computing firm similarity

Figure C1 displays a numerical example of how the within firm similarity is calculated.

Figure C1: Example of firm similarity
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