Industry-University links and firms' resilience during the Great Recession: Evidence from Spain. work in progress

D. Añón; O. Vicente

Universitat de València

Innovation, Firm Growth, and Employment: Empirical Evidence and Policy Perspectives Worshop

Introduction

- Firms cope differently when facing an adverse shock.
- Importance to study the determinants of firms' resilience for policy and management.
- We focus on the role of industry-university links as a source of firm resilience.
 - Industry-university links contribute to innovation, which is considered as a source of a firm's resilience (Hall 1987; Antonioli et al. 2013; Gupta 2019)
 - Industry-university links lead to greater organizational flexibility: firms adjust better to changing environments and new market opportunities
 - Firms with university links benefit from R&D cost reduction, shared resources, risk decentralization and complementarities.

Previous literature

- We contribute to:
 - The open innovation literature (Chesbrough 2003) and the role played by universities (Añón 2016; Bellucci and Pennacchio 2016; García-Vega and Vicente-Chirivella 2020; Vega-Jurado et al. 2017).
 - The literature on determinants of firms' resilience (Alfaro and Chen 2012; Aghion et al. 2021; Bertschek et al. 2019; Chodorow-Reich 2014; Giroud and Mueller 2017; Gupta 2019).
 - The inovation (R&D) and the business cycle (Aghion et al. 2012; Berchicci et al. 2013; Caballero and Hammour 1994; Hall 1991; Geroski and Walter 1995).

Paper's contributions

- We estimate the differential effect of a negative demand shock on the performance of firms with university links:
 - We analyze the differential effects of two modes of links (cooperation and R&D contracting) on firm resilience.
 - We explore whether firm size plays a role in this relationship.
- We look at the mechanisms behind the higher resilience of firms that carry out agreements with universities: i.e., product differentiation

Methodology

1. Baseline specification (Aghion et al. 2021, Gupta 2019)

$$\Delta y_{ijt} = y_{ijt+1} - y_{ijt-1} = \alpha Uni_{ij0} + \beta Uni_{ij0} * Shock_j + \gamma x_{ij0} + \phi_{jt} + \epsilon_{ij}$$

 β represents a measure of the differential effect of a severe negative demand shock on the performance of firms with university links relative to their counterparts.

2. Extended version considering pre-recession years:

2
$$\Delta y_{ijt} = \beta_1 Uni_{ijt-1} + \beta_2 GFC * Shock_j + \beta_3 Uni_{ijt-1} * GFC + \beta_4 Uni_{ijt-1} * GFC * Shock_j + \gamma x_{ijt-1} + \phi_{jt} + \epsilon_{ijt}$$

Data

- Source: PITEC dataset (manufacturing firms)
- Period:
 - Basic specification: 2007-2011
 - Extended version: 2004-2011
- Measure of resilience: real sales growth $\Delta y_{ijt} = y_{ijt+1} y_{ijt-1}$
- Firms in the sample provide information on university links: R&D services acquired from universities & R&D collaborations with universities

Descriptive statistics

Figure 1: Share of firms with university links in 2006, by industry

Demand shock

We use real export growth to proxy for the crisis intensity (Aghion et al. 2021; Gupta 2019) - Data from UN COMTRADE

shock

$$shock_j = -\Delta X_{j2008} = -(\overline{x}_{t,t+1} - \overline{x}_{t-2,t-1})$$

As IV we use US real exports

2 GFC = 1 for t = 2008, 2009, 2010.

Descriptive statistics

Figure 2: Changes in real sales by shock and university links

Baseline Results

	Dependent variable: Sales growth (Two-year difference)			
	OLS	OLS	OLS	IV
	(1)	(2)	(3)	(4)
University links2006	0.067***	0.064***	0.052***	0.052***
	(0.011)	(0.011)	(0.015)	(0.014)
Shock	-0.566***	-0.603***		
	(0.103)	(0.104)		
University links2006 # Shock		0.224***	0.221**	0.233**
		(0.080)	(0.084)	(0.094)
Industry FE	Yes	Yes		
Industry-year FE			Yes	Yes
Firm controls			Yes	Yes
Weak instruments (F-stat)				66.8
Observations	15,148	15,148	15,148	15,148
R ²	0.052	0.052	0.162	0.162

Note: The dependent variable is firm real sales growth measured from t-1 to t + 1. Data are pooled for growth over 2007-2009, 2008-2010, and 2009-2011. Growth is winsorized at 1% on both tails. University links is measured at the three cross-sections respectively. Shock is the export growth measured as the percentage change from 2006-07 to 2008-09 at the industry level. Columns (3) and (4) control for labor productivity, firm size, export status, inhouse R&D status, total R&D to sales ratio, and firm's financial barriers prior to the Great Recession in the year 2006. Standard errors are clustered at the industry level and reported in parentheses. Significance level: * p<0.1, ** p<0.05, *** p<0.01.

Figure 3: University-links and sales growth during the crisis (2007-2011)

Results (II) Dependent variable: Sales growth (Two-year difference) OLS OLS OLS OLS (1)(2)(3)(4)Collaborate2006 0.030 0.033* 0.029 (0.018)(0.019)(0.018)0.047*** 0.046*** 0.049*** Outsource2006 (0.009)(0.009)(0.013)0 233** Collaborate2006 # shock 0.179 (0.124)(0.099)Outsource2006 # shock 0.134 0.229*** (0.112)(0.073)Only Collaborate2006 0.035 (0.023)0.054*** Only Outsource2006 (0.014)Both2006 0.073*** (0.021)Only Collaborate2006 # shock 0.188 (0.179)Only Outsource2006# shock 0.156** (0.066)Both2006 # shock 0.304** (0.119)

Figure 4: Collaborations, outsourcing and sales growth during the crisis (2007-2011)

Placebo analysis

-				
	Dependent variable: Sales growth (Two-year difference)			
	2004-2007		2004-2011	
	OLS	OLS	FE	FE
	(1)	(2)	(3)	(4)
University linkst-1	0.019	0.023	-0.021*	-0.017
	(0.015)	(0.015)	(0.012)	(0.011)
University linkst-1 # Shock		-0.160		-0.144
		(0.123)		(0.097)
University linkst-1# GFC			0.050***	0.045***
			(0.014)	(0.014)
GFC # Shock				-0.231
				(2.681)
University linkst-1 # GFC # Shock				0.226*
				(0.121)
Firm FE	No	No	Yes	Yes
Industry-year FE	Yes	Yes	Yes	Yes
Firm controls	Yes	Yes	Yes	Yes
Observations	10,530	10,530	31,254	31,254
R ²	0.476	0.476	0.468	0.468

Note: The dependent variable is firm real sales growth measured from t-1 to t + 1. Growth is winsorized at 1% on both tails. In columns (1) and (2), data is pooled for growth over 2004-2006 and 2005-2007; while in columns (3) and (4) data is pooled for pre- and post-crisis periods (2004-2006, 2005-2007, 2006-2008, 2008-2010, 2009-2011. The University links variable is measured at t-1. Shock is the export growth measured as the percentage change from 2006-07 to 2008-09the at the industry level. GFC is a dummy equal to 1 for equal to 2008, 2009, and 2010. All columns control for labor productivity, firm size, export status, internal R&D status, R&D to sales ratio, and firm's financial barriers in t-1. Significance level: *p<0.1, **p<0.05, **p<0.01.

Figure 5: Robustness checks

Mechanism

- Knowledge from universities becomes more valuable during downturns.
- We aim to assess the mechanism by which university knowledge transfers contribute to firm's resilience.
- We focus on innovation strategies towards (horizontal / vertical) differentiation (Geroski & Walters 1995).
 - university knowledge helps firms to upgrade the quality of products or bring higher quality products to the market
 - general innovation measures do not distinguish new high quality products from incremental innovation. To address this, we use variables more related to product differentiation.

$$I_{it} = \beta_1 Un_{ijt-1} + \beta_2 GFC * Shock_j + \beta_3 Un_{ijt-1} * GFC + \beta_4 Un_{ijt-1} * GFC * Shock_j + \gamma x_{ijt-1} + \phi_{jt} + \epsilon_{ijt}$$

Results (III)

Dep. Variable:	Number of patents	Increase product	Quality improvement	New markets	
		lines		INCW IIIdIKCIS	markets
	Negative binomial	Probit	Probit	Probit	
	(1)	(2)	(3)	(4)	
University links	0.693***	0.087*	0.106**	0.062	
	(0.081)	(0.052)	(0.046)	(0.050)	
University links # Shock	-0.875***	0.355	-0.462***	0.246	
	(0.303)	(0.279)	(0.151)	(0.189)	
GFC # Shock	0.287**	0.089*	0.158***	0.256***	
	(0.125)	(0.048)	(0.061)	(0.041)	
University links # GFC	37.615***	1.721***	2.147***	13.841***	
	(1.379)	(0.444)	(0.396)	(0.514)	
University links# GFC # Shock	1.150**	-0.069	0.409*	0.314	
	(0.507)	(0.263)	(0.224)	(0.314)	
Industry-year FE	Yes	Yes	Yes	Yes	
Firm controls	Yes	Yes	Yes	Yes	
Observations	33,024	33,024	33,024	33,024	

Note: The dependent variable in column (1) is the number of patents. The dependent variable in columns (2) is a categorical variable for whether the firm ranks very or quite important the objective of increasing the number of product lines. The dependent variable in columns (2) is a categorical variable for whether the firm ranks very or quite important the objective of quality improvement. The dependent variable in columns (4) is a categorical variable for whether the firm ranks very or quite important the objective of quality improvement. The dependent variable in columns (4) is a categorical variable for whether the firm ranks very or quite important the objective of market expansion through innovation. In columns (1) to (4) data is pooled for the period 2005-2010 is pooled. Firm's controls include (dated at period t-1): firm's size, R&D status, total R&D intensity, financial obstacles, government finding, export status, foreign ownership, group ownership and whether the firm is a star-up. All columns control also for industry-year fixed effects. Standard errors are clustered at the industry level and reported in parentheses. Significance level: * po1, ** p=0.01; ** p=0.01;

Figure 6: Industry-university links and product differentiation

Results: the role of firm size (IV)

	Dependent variable: Sales growth (Two-year difference)			
	2007-2011 (OLS)		2004-201	1 (FE)
	SMEs	Large	SMEs	Large
	(1)	(2)	(3)	(4)
University links2006	0.057***	0.047		
	(0.014)	(0.030)		
University links2006 # shock	0.343***	-0.029		
	(0.056)	(0.160)		
University links _{t-1}			-0.013	-0.037*
			(0.014)	(0.020)
University links _{t-1} # shock			-0.113	-0.139
			(0.105)	(0.140)
GFC# shock			1.401	-2.054
			(3.320)	(4.777)
University links _{t-1} # GFC			0.049***	0.027
			(0.018)	(0.023)
University links _{t-1} # GFC# shock			0.260*	0.128
			(0.145)	(0.175)
Industry-year FE	Yes	Yes	Yes	Yes
Firm controls	Yes	Yes	Yes	Yes
Observations	12,349	2,806	25,085	6,169
R2	0.155	0.251	0.459	0.574

Figure 7: Firm size, university links and firms' resilience

Conclusions

- Our goal is to assess whether firms with university links are more resilient in downturns.
- The empirical evidence is based on data from the Spanish CIS (PITEC):
 - we focus on manufacturing firms
 - we exploit the negative shock of the 2008 crisis
- Using a diff-in-diff approach, we find that firms with university links performed better during the crisis. These links became relatively more relevant in sectors severely hit.
 - The resilience arises from outsourcing rather than from collaboration, although there are synergies

Conclusion

- Knowledge transfers from universities help firms invest more in product differentiation in downturns
 - firms with university links registered more patents, increase product lines, improve quality and expand to new markets in the event of the GFC
- The significant role of university transfers in the event of a crisis is found for SMEs
- Policy implications of the findings: the importance of firms' incentives to collaborate or outsource R&D from universities.

Conclusion

Thank you for your attention!